Chaudhary, Maheep
Modular Training of Neural Networks aids Interpretability
Golechha, Satvik, Chaudhary, Maheep, Velja, Joan, Abate, Alessandro, Schoots, Nandi
An approach to improve neural network interpretability is via clusterability, i.e., splitting a model into disjoint clusters that can be studied independently. We define a measure for clusterability and show that pre-trained models form highly enmeshed clusters via spectral graph clustering. We thus train models to be more modular using a "clusterability loss" function that encourages the formation of non-interacting clusters. Using automated interpretability techniques, we show that our method can help train models that are more modular and learn different, disjoint, and smaller circuits. We investigate CNNs trained on MNIST and CIFAR, small transformers trained on modular addition, and language models. Our approach provides a promising direction for training neural networks that learn simpler functions and are easier to interpret.
MemeCLIP: Leveraging CLIP Representations for Multimodal Meme Classification
Shah, Siddhant Bikram, Shiwakoti, Shuvam, Chaudhary, Maheep, Wang, Haohan
The complexity of text-embedded images presents a formidable challenge in machine learning given the need for multimodal understanding of multiple aspects of expression conveyed by them. While previous research in multimodal analysis has primarily focused on singular aspects such as hate speech and its subclasses, this study expands this focus to encompass multiple aspects of linguistics: hate, targets of hate, stance, and humor. We introduce a novel dataset PrideMM comprising 5,063 text-embedded images associated with the LGBTQ+ Pride movement, thereby addressing a serious gap in existing resources. We conduct extensive experimentation on PrideMM by using unimodal and multimodal baseline methods to establish benchmarks for each task. Additionally, we propose a novel framework MemeCLIP for efficient downstream learning while preserving the knowledge of the pre-trained CLIP model. The results of our experiments show that MemeCLIP achieves superior performance compared to previously proposed frameworks on two real-world datasets. We further compare the performance of MemeCLIP and zero-shot GPT-4 on the hate classification task. Finally, we discuss the shortcomings of our model by qualitatively analyzing misclassified samples. Our code and dataset are publicly available at: https://github.com/SiddhantBikram/MemeCLIP.
Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey with Causality Perspectives
Liu, Haoyang, Chaudhary, Maheep, Wang, Haohan
The trustworthiness of machine learning has emerged as a critical topic in the field, encompassing various applications and research areas such as robustness, security, interpretability, and fairness. The last decade saw the development of numerous methods addressing these challenges. In this survey, we systematically review these advancements from a data-centric perspective, highlighting the shortcomings of traditional empirical risk minimization (ERM) training in handling challenges posed by the data. Interestingly, we observe a convergence of these methods, despite being developed independently across trustworthy machine learning subfields. Pearl's hierarchy of causality offers a unifying framework for these techniques. Accordingly, this survey presents the background of trustworthy machine learning development using a unified set of concepts, connects this language to Pearl's causal hierarchy, and finally discusses methods explicitly inspired by causality literature. We provide a unified language with mathematical vocabulary to link these methods across robustness, adversarial robustness, interpretability, and fairness, fostering a more cohesive understanding of the field. Further, we explore the trustworthiness of large pretrained models. After summarizing dominant techniques like fine-tuning, parameter-efficient fine-tuning, prompting, and reinforcement learning with human feedback, we draw connections between them and the standard ERM. This connection allows us to build upon the principled understanding of trustworthy methods, extending it to these new techniques in large pretrained models, paving the way for future methods. Existing methods under this perspective are also reviewed. Lastly, we offer a brief summary of the applications of these methods and discuss potential future aspects related to our survey. For more information, please visit http://trustai.one.