Chatziafratis, Vaggos
From Large to Small Datasets: Size Generalization for Clustering Algorithm Selection
Chatziafratis, Vaggos, Karmarkar, Ishani, Vitercik, Ellen
In clustering algorithm selection, we are given a massive dataset and must efficiently select which clustering algorithm to use. We study this problem in a semi-supervised setting, with an unknown ground-truth clustering that we can only access through expensive oracle queries. Ideally, the clustering algorithm's output will be structurally close to the ground truth. We approach this problem by introducing a notion of size generalization for clustering algorithm accuracy. We identify conditions under which we can (1) subsample the massive clustering instance, (2) evaluate a set of candidate algorithms on the smaller instance, and (3) guarantee that the algorithm with the best accuracy on the small instance will have the best accuracy on the original big instance. We provide theoretical size generalization guarantees for three classic clustering algorithms: single-linkage, k-means++, and (a smoothed variant of) Gonzalez's k-centers heuristic. We validate our theoretical analysis with empirical results, observing that on real-world clustering instances, we can use a subsample of as little as 5% of the data to identify which algorithm is best on the full dataset.
From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical Clustering
Chami, Ines, Gu, Albert, Chatziafratis, Vaggos, Rรฉ, Christopher
Similarity-based Hierarchical Clustering (HC) is a classical unsupervised machine learning algorithm that has traditionally been solved with heuristic algorithms like Average-Linkage. Recently, Dasgupta reframed HC as a discrete optimization problem by introducing a global cost function measuring the quality of a given tree. In this work, we provide the first continuous relaxation of Dasgupta's discrete optimization problem with provable quality guarantees. The key idea of our method, HypHC, is showing a direct correspondence from discrete trees to continuous representations (via the hyperbolic embeddings of their leaf nodes) and back (via a decoding algorithm that maps leaf embeddings to a dendrogram), allowing us to search the space of discrete binary trees with continuous optimization. Building on analogies between trees and hyperbolic space, we derive a continuous analogue for the notion of lowest common ancestor, which leads to a continuous relaxation of Dasgupta's discrete objective. We can show that after decoding, the global minimizer of our continuous relaxation yields a discrete tree with a (1 + epsilon)-factor approximation for Dasgupta's optimal tree, where epsilon can be made arbitrarily small and controls optimization challenges. We experimentally evaluate HypHC on a variety of HC benchmarks and find that even approximate solutions found with gradient descent have superior clustering quality than agglomerative heuristics or other gradient based algorithms. Finally, we highlight the flexibility of HypHC using end-to-end training in a downstream classification task.
On the Computational Power of Online Gradient Descent
Chatziafratis, Vaggos, Roughgarden, Tim, Wang, Joshua R.
We prove that the evolution of weight vectors in online gradient descent can encode arbitrary polynomial-space computations, even in the special case of soft-margin support vector machines. Our results imply that, under weak complexity-theoretic assumptions, it is impossible to reason efficiently about the fine-grained behavior of online gradient descent.
Hierarchical Clustering with Structural Constraints
Chatziafratis, Vaggos, Niazadeh, Rad, Charikar, Moses
Hierarchical clustering is a popular unsupervised data analysis method. For many real-world applications, we would like to exploit prior information about the data that imposes constraints on the clustering hierarchy, and is not captured by the set of features available to the algorithm. This gives rise to the problem of "hierarchical clustering with structural constraints". Structural constraints pose major challenges for bottom-up approaches like average/single linkage and even though they can be naturally incorporated into top-down divisive algorithms, no formal guarantees exist on the quality of their output. In this paper, we provide provable approximation guarantees for two simple top-down algorithms, using a recently introduced optimization viewpoint of hierarchical clustering with pairwise similarity information [Dasgupta, 2016]. We show how to find good solutions even in the presence of conflicting prior information, by formulating a "constraint-based regularization" of the objective. Finally, we explore a variation of this objective for dissimilarity information [Cohen-Addad et al., 2018] and improve upon current techniques.