Goto

Collaborating Authors

 Chattopadhyay, Tanushyam


Interpretable Feature Recommendation for Signal Analytics

arXiv.org Machine Learning

This paper presents an automated approach for interpretable feature recommendation for solving signal data analytics problems. The method has been tested by performing experiments on datasets in the domain of prognostics where interpretation of features is considered very important. The proposed approach is based on Wide Learning architecture and provides means for interpretation of the recommended features. It is to be noted that such an interpretation is not available with feature learning approaches like Deep Learning (such as Convolutional Neural Network) or feature transformation approaches like Principal Component Analysis. Results show that the feature recommendation and interpretation techniques are quite effective for the problems at hand in terms of performance and drastic reduction in time to develop a solution. It is further shown by an example, how this human-in-loop interpretation system can be used as a prescriptive system.


Automation of Feature Engineering for IoT Analytics

arXiv.org Machine Learning

This paper presents an approach for automation of interpretable feature selection for Internet Of Things Analytics (IoTA) using machine learning (ML) techniques. Authors have conducted a survey over different people involved in different IoTA based application development tasks. The survey reveals that feature selection is the most time consuming and niche skill demanding part of the entire workflow. This paper shows how feature selection is successfully automated without sacrificing the decision making accuracy and thereby reducing the project completion time and cost of hiring expensive resources. Several pattern recognition principles and state of art (SoA) ML techniques are followed to design the overall approach for the proposed automation. Three data sets are considered to establish the proof-of-concept. Experimental results show that the proposed automation is able to reduce the time for feature selection to $2$ days instead of $4-6$ months which would have been required in absence of the automation. This reduction in time is achieved without any sacrifice in the accuracy of the decision making process. Proposed method is also compared against Multi Layer Perceptron (MLP) model as most of the state of the art works on IoTA uses MLP based Deep Learning. Moreover the feature selection method is compared against SoA feature reduction technique namely Principal Component Analysis (PCA) and its variants. The results obtained show that the proposed method is effective.


Towards Wide Learning: Experiments in Healthcare

arXiv.org Machine Learning

In this paper, a Wide Learning architecture is proposed that attempts to automate the feature engineering portion of the machine learning (ML) pipeline. Feature engineering is widely considered as the most time consuming and expert knowledge demanding portion of any ML task. The proposed feature recommendation approach is tested on 3 healthcare datasets: a) PhysioNet Challenge 2016 dataset of phonocardiogram (PCG) signals, b) MIMIC II blood pressure classification dataset of photoplethysmogram (PPG) signals and c) an emotion classification dataset of PPG signals. While the proposed method beats the state of the art techniques for 2nd and 3rd dataset, it reaches 94.38% of the accuracy level of the winner of PhysioNet Challenge 2016. In all cases, the effort to reach a satisfactory performance was drastically less (a few days) than manual feature engineering.