Goto

Collaborating Authors

 Chatrath, Veronica


ViLBias: A Comprehensive Framework for Bias Detection through Linguistic and Visual Cues , presenting Annotation Strategies, Evaluation, and Key Challenges

arXiv.org Artificial Intelligence

The integration of Large Language Models (LLMs) and Vision-Language Models (VLMs) opens new avenues for addressing complex challenges in multimodal content analysis, particularly in biased news detection. This study introduces VLBias, a framework that leverages state-of-the-art LLMs and VLMs to detect linguistic and visual biases in news content. We present a multimodal dataset comprising textual content and corresponding images from diverse news sources. We propose a hybrid annotation framework that combines LLM-based annotations with human review to ensure high-quality labeling while reducing costs and enhancing scalability. Our evaluation compares the performance of state-of-the-art SLMs and LLMs for both modalities (text and images) and the results reveal that while SLMs are computationally efficient, LLMs demonstrate superior accuracy in identifying subtle framing and text-visual inconsistencies. Furthermore, empirical analysis shows that incorporating visual cues alongside textual data improves bias detection accuracy by 3 to 5%. This study provides a comprehensive exploration of LLMs, SLMs, and VLMs as tools for detecting multimodal biases in news content and highlights their respective strengths, limitations, and potential for future applications


Fact or Fiction? Can LLMs be Reliable Annotators for Political Truths?

arXiv.org Artificial Intelligence

Political misinformation poses significant challenges to democratic processes, shaping public opinion and trust in media. Manual fact-checking methods face issues of scalability and annotator bias, while machine learning models require large, costly labelled datasets. This study investigates the use of state-of-the-art large language models (LLMs) as reliable annotators for detecting political factuality in news articles. Using open-source LLMs, we create a politically diverse dataset, labelled for bias through LLM-generated annotations. These annotations are validated by human experts and further evaluated by LLM-based judges to assess the accuracy and reliability of the annotations. Our approach offers a scalable and robust alternative to traditional fact-checking, enhancing transparency and public trust in media.


FakeWatch: A Framework for Detecting Fake News to Ensure Credible Elections

arXiv.org Artificial Intelligence

In today's technologically driven world, the rapid spread of fake news, particularly during critical events like elections, poses a growing threat to the integrity of information. To tackle this challenge head-on, we introduce FakeWatch, a comprehensive framework carefully designed to detect fake news. Leveraging a newly curated dataset of North American election-related news articles, we construct robust classification models. Our framework integrates a model hub comprising of both traditional machine learning (ML) techniques, and state-of-the-art Language Models (LMs) to discern fake news effectively. Our objective is to provide the research community with adaptable and precise classification models adept at identifying fake news for the elections agenda. Quantitative evaluations of fake news classifiers on our dataset reveal that, while state-of-the-art LMs exhibit a slight edge over traditional ML models, classical models remain competitive due to their balance of accuracy and computational efficiency. Additionally, qualitative analyses shed light on patterns within fake news articles. We provide our labeled data at https://huggingface.co/datasets/newsmediabias/fake_news_elections_labelled_data and model https://huggingface.co/newsmediabias/FakeWatch for reproducibility and further research.


Closing the Perception-Action Loop for Semantically Safe Navigation in Semi-Static Environments

arXiv.org Artificial Intelligence

Autonomous robots navigating in changing environments demand adaptive navigation strategies for safe long-term operation. While many modern control paradigms offer theoretical guarantees, they often assume known extrinsic safety constraints, overlooking challenges when deployed in real-world environments where objects can appear, disappear, and shift over time. In this paper, we present a closed-loop perception-action pipeline that bridges this gap. Our system encodes an online-constructed dense map, along with object-level semantic and consistency estimates into a control barrier function (CBF) to regulate safe regions in the scene. A model predictive controller (MPC) leverages the CBF-based safety constraints to adapt its navigation behaviour, which is particularly crucial when potential scene changes occur. We test the system in simulations and real-world experiments to demonstrate the impact of semantic information and scene change handling on robot behavior, validating the practicality of our approach.


She had Cobalt Blue Eyes: Prompt Testing to Create Aligned and Sustainable Language Models

arXiv.org Artificial Intelligence

As the use of large language models (LLMs) increases within society, as does the risk of their misuse. Appropriate safeguards must be in place to ensure LLM outputs uphold the ethical standards of society, highlighting the positive role that artificial intelligence technologies can have. Recent events indicate ethical concerns around conventionally trained LLMs, leading to overall unsafe user experiences. This motivates our research question: how do we ensure LLM alignment? In this work, we introduce a test suite of unique prompts to foster the development of aligned LLMs that are fair, safe, and robust. We show that prompting LLMs at every step of the development pipeline, including data curation, pre-training, and fine-tuning, will result in an overall more responsible model. Our test suite evaluates outputs from four state-of-the-art language models: GPT-3.5, GPT-4, OPT, and LLaMA-2. The assessment presented in this paper highlights a gap between societal alignment and the capabilities of current LLMs. Additionally, implementing a test suite such as ours lowers the environmental overhead of making models safe and fair.


FakeWatch ElectionShield: A Benchmarking Framework to Detect Fake News for Credible US Elections

arXiv.org Artificial Intelligence

In today's technologically driven world, the spread of fake news, particularly during crucial events such as elections, presents an increasing challenge to the integrity of information. To address this challenge, we introduce FakeWatch ElectionShield, an innovative framework carefully designed to detect fake news. We have created a novel dataset of North American election-related news articles through a blend of advanced language models (LMs) and thorough human verification, for precision and relevance. We propose a model hub of LMs for identifying fake news. Our goal is to provide the research community with adaptable and accurate classification models in recognizing the dynamic nature of misinformation. Extensive evaluation of fake news classifiers on our dataset and a benchmark dataset shows our that while state-of-the-art LMs slightly outperform the traditional ML models, classical models are still competitive with their balance of accuracy, explainability, and computational efficiency. This research sets the foundation for future studies to address misinformation related to elections.


Unlocking Bias Detection: Leveraging Transformer-Based Models for Content Analysis

arXiv.org Artificial Intelligence

Bias detection in text is imperative due to its role in reinforcing negative stereotypes, disseminating misinformation, and influencing decisions. Current language models often fall short in generalizing beyond their training sets. In response, we introduce the Contextualized Bi-Directional Dual Transformer (CBDT) Classifier. This novel architecture utilizes two synergistic transformer networks: the Context Transformer and the Entity Transformer, aiming for enhanced bias detection. Our dataset preparation follows the FAIR principles, ensuring ethical data usage. Through rigorous testing on various datasets, CBDT showcases its ability in distinguishing biased from neutral statements, while also pinpointing exact biased lexemes. Our approach outperforms existing methods, achieving a 2-4\% increase over benchmark performances. This opens avenues for adapting the CBDT model across diverse linguistic and cultural landscapes.


POV-SLAM: Probabilistic Object-Aware Variational SLAM in Semi-Static Environments

arXiv.org Artificial Intelligence

Simultaneous localization and mapping (SLAM) in slowly varying scenes is important for long-term robot task completion. Failing to detect scene changes may lead to inaccurate maps and, ultimately, lost robots. Classical SLAM algorithms assume static scenes, and recent works take dynamics into account, but require scene changes to be observed in consecutive frames. Semi-static scenes, wherein objects appear, disappear, or move slowly over time, are often overlooked, yet are critical for long-term operation. We propose an object-aware, factor-graph SLAM framework that tracks and reconstructs semi-static object-level changes. Our novel variational expectation-maximization strategy is used to optimize factor graphs involving a Gaussian-Uniform bimodal measurement likelihood for potentially-changing objects. We evaluate our approach alongside the state-of-the-art SLAM solutions in simulation and on our novel real-world SLAM dataset captured in a warehouse over four months. Our method improves the robustness of localization in the presence of semi-static changes, providing object-level reasoning about the scene.


POCD: Probabilistic Object-Level Change Detection and Volumetric Mapping in Semi-Static Scenes

arXiv.org Artificial Intelligence

Maintaining an up-to-date map to reflect recent changes in the scene is very important, particularly in situations involving repeated traversals by a robot operating in an environment over an extended period. Undetected changes may cause a deterioration in map quality, leading to poor localization, inefficient operations, and lost robots. Volumetric methods, such as truncated signed distance functions (TSDFs), have quickly gained traction due to their real-time production of a dense and detailed map, though map updating in scenes that change over time remains a challenge. We propose a framework that introduces a novel probabilistic object state representation to track object pose changes in semi-static scenes. The representation jointly models a stationarity score and a TSDF change measure for each object. A Bayesian update rule that incorporates both geometric and semantic information is derived to achieve consistent online map maintenance. To extensively evaluate our approach alongside the state-of-the-art, we release a novel real-world dataset in a warehouse environment. We also evaluate on the public ToyCar dataset. Our method outperforms state-of-the-art methods on the reconstruction quality of semi-static environments.