Chatelain, Clément
Temporal receptive field in dynamic graph learning: A comprehensive analysis
Karmim, Yannis, Yang, Leshanshui, S'Niehotta, Raphaël Fournier, Chatelain, Clément, Adam, Sébastien, Thome, Nicolas
Dynamic link prediction is a critical task in the analysis of evolving networks, with applications ranging from recommender systems to economic exchanges. However, the concept of the temporal receptive field, which refers to the temporal context that models use for making predictions, has been largely overlooked and insufficiently analyzed in existing research. In this study, we present a comprehensive analysis of the temporal receptive field in dynamic graph learning. By examining multiple datasets and models, we formalize the role of temporal receptive field and highlight their crucial influence on predictive accuracy. Our results demonstrate that appropriately chosen temporal receptive field can significantly enhance model performance, while for some models, overly large windows may introduce noise and reduce accuracy. We conduct extensive benchmarking to validate our findings, ensuring that all experiments are fully reproducible.
Dynamic Graph Representation Learning with Neural Networks: A Survey
Yang, Leshanshui, Adam, Sébastien, Chatelain, Clément
In recent years, Dynamic Graph (DG) representations have been increasingly used for modeling dynamic systems due to their ability to integrate both topological and temporal information in a compact representation. Dynamic graphs allow to efficiently handle applications such as social network prediction, recommender systems, traffic forecasting or electroencephalography analysis, that can not be adressed using standard numeric representations. As a direct consequence of the emergence of dynamic graph representations, dynamic graph learning has emerged as a new machine learning problem, combining challenges from both sequential/temporal data processing and static graph learning. In this research area, Dynamic Graph Neural Network (DGNN) has became the state of the art approach and plethora of models have been proposed in the very recent years. This paper aims at providing a review of problems and models related to dynamic graph learning. The various dynamic graph supervised learning settings are analysed and discussed. We identify the similarities and differences between existing models with respect to the way time information is modeled. Finally, general guidelines for a DGNN designer when faced with a dynamic graph learning problem are provided.
Fast object detection in compressed JPEG Images
Deguerre, Benjamin, Chatelain, Clément, Gasso, Gilles
Object detection in still images has drawn a lot of attention over past few years, and with the advent of Deep Learning impressive performances have been achieved with numerous industrial applications. Most of these deep learning models rely on RGB images to localize and identify objects in the image. However in some application scenarii, images are compressed either for storage savings or fast transmission. Therefore a time consuming image decompression step is compulsory in order to apply the aforementioned deep models. To alleviate this drawback, we propose a fast deep architecture for object detection in JPEG images, one of the most widespread compression format. We train a neural network to detect objects based on the blockwise DCT (discrete cosine transform) coefficients {issued from} the JPEG compression algorithm. We modify the well-known Single Shot multibox Detector (SSD) by replacing its first layers with one convolutional layer dedicated to process the DCT inputs. Experimental evaluations on PASCAL VOC and industrial dataset comprising images of road traffic surveillance show that the model is about $2\times$ faster than regular SSD with promising detection performances. To the best of our knowledge, this paper is the first to address detection in compressed JPEG images.
Neural Networks Regularization Through Class-wise Invariant Representation Learning
Belharbi, Soufiane, Chatelain, Clément, Hérault, Romain, Adam, Sébastien
Training deep neural networks is known to require a large number of training samples. However, in many applications only few training samples are available. In this work, we tackle the issue of training neural networks for classification task when few training samples are available. We attempt to solve this issue by proposing a new regularization term that constrains the hidden layers of a network to learn class-wise invariant representations. In our regularization framework, learning invariant representations is generalized to the class membership where samples with the same class should have the same representation. Numerical experiments over MNIST and its variants showed that our proposal helps improving the generalization of neural network particularly when trained with few samples. We provide the source code of our framework https://github.com/sbelharbi/learning-class-invariant-features .