Charlin, Laurent
LLMs for Literature Review: Are we there yet?
Agarwal, Shubham, Sahu, Gaurav, Puri, Abhay, Laradji, Issam H., Dvijotham, Krishnamurthy DJ, Stanley, Jason, Charlin, Laurent, Pal, Christopher
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Further, we demonstrate that our planning-based approach achieves higher-quality reviews by minimizing hallucinated references in the generated review by 18-26% compared to existing simpler LLM-based generation methods.
Discovering Data Structures: Nearest Neighbor Search and Beyond
Salemohamed, Omar, Charlin, Laurent, Garg, Shivam, Sharan, Vatsal, Valiant, Gregory
We propose a general framework for end-to-end learning of data structures. Our framework adapts to the underlying data distribution and provides fine-grained control over query and space complexity. Crucially, the data structure is learned from scratch, and does not require careful initialization or seeding with candidate data structures. We first apply this framework to the problem of nearest neighbor search. In several settings, we are able to reverse-engineer the learned data structures and query algorithms. For 1D nearest neighbor search, the model discovers optimal distribution (in)dependent algorithms such as binary search and variants of interpolation search. In higher dimensions, the model learns solutions that resemble k-d trees in some regimes, while in others, elements of locality-sensitive hashing emerge. Additionally, the model learns useful representations of high-dimensional data and exploits them to design effective data structures. We also adapt our framework to the problem of estimating frequencies over a data stream, and believe it could be a powerful discovery tool for new problems. Can deep learning models be trained to discover data structures from scratch? There are several motivations for this question. Deep learning models are increasingly performing tasks once considered exclusive to humans, from image recognition and mastering the game of Go to engaging in natural language conversations. Designing data structures and algorithms, along with solving complex math problems, are particularly challenging tasks. They require searching through a vast combinatorial space with a difficult to define structure. It is therefore natural to ask what it would take for deep learning models to solve such problems. There are already promising signs: these models have discovered fast matrix-multiplication algorithms (Fawzi et al., 2022), solved SA T problems (Selsam et al., 2018), and learned optimization algorithms for various learning tasks (Garg et al., 2022; Aky urek et al., 2022; Fu et al., 2023; V on Oswald et al., 2023). In this work, we investigate the problem of data structure discovery, with a focus on nearest neighbor search. The second motivation is practical. Data structures are ubiquitous objects that enable efficient querying. Traditionally, they have been designed to be worst-case optimal and therefore agnostic to the underlying data and query distributions.
TEARS: Textual Representations for Scrutable Recommendations
Penaloza, Emiliano, Gouvert, Olivier, Wu, Haolun, Charlin, Laurent
Traditional recommender systems rely on high-dimensional (latent) embeddings for modeling user-item interactions, often resulting in opaque representations that lack interpretability. Moreover, these systems offer limited control to users over their recommendations. Inspired by recent work, we introduce TExtuAl Representations for Scrutable recommendations (TEARS) to address these challenges. Instead of representing a user's interests through a latent embedding, TEARS encodes them in natural text, providing transparency and allowing users to edit them. To do so, TEARS uses a modern LLM to generate user summaries based on user preferences. We find the summaries capture user preferences uniquely. Using these summaries, we take a hybrid approach where we use an optimal transport procedure to align the summaries' representation with the learned representation of a standard VAE for collaborative filtering. We find this approach can surpass the performance of three popular VAE models while providing user-controllable recommendations. We also analyze the controllability of TEARS through three simulated user tasks to evaluate the effectiveness of a user editing its summary.
Towards Modular LLMs by Building and Reusing a Library of LoRAs
Ostapenko, Oleksiy, Su, Zhan, Ponti, Edoardo Maria, Charlin, Laurent, Roux, Nicolas Le, Pereira, Matheus, Caccia, Lucas, Sordoni, Alessandro
The growing number of parameter-efficient adaptations of a base large language model (LLM) calls for studying whether we can reuse such trained adapters to improve performance for new tasks. We study how to best build a library of adapters given multi-task data and devise techniques for both zero-shot and supervised task generalization through routing in such library. We benchmark existing approaches to build this library and introduce model-based clustering, MBC, a method that groups tasks based on the similarity of their adapter parameters, indirectly optimizing for transfer across the multi-task dataset. To re-use the library, we present a novel zero-shot routing mechanism, Arrow, which enables dynamic selection of the most relevant adapters for new inputs without the need for retraining. We experiment with several LLMs, such as Phi-2 and Mistral, on a wide array of held-out tasks, verifying that MBC-based adapters and Arrow routing lead to superior generalization to new tasks. We make steps towards creating modular, adaptable LLMs that can match or outperform traditional joint training.
Integrating Present and Past in Unsupervised Continual Learning
Zhang, Yipeng, Charlin, Laurent, Zemel, Richard, Ren, Mengye
We formulate a unifying framework for unsupervised continual learning (UCL), which disentangles learning objectives that are specific to the present and the past data, encompassing stability, plasticity, and cross-task consolidation. The framework reveals that many existing UCL approaches overlook cross-task consolidation and try to balance plasticity and stability in a shared embedding space. This results in worse performance due to a lack of within-task data diversity and reduced effectiveness in learning the current task. Our method, Osiris, which explicitly optimizes all three objectives on separate embedding spaces, achieves state-of-the-art performance on all benchmarks, including two novel benchmarks proposed in this paper featuring semantically structured task sequences. Compared to standard benchmarks, these two structured benchmarks more closely resemble visual signals received by humans and animals when navigating real-world environments. Finally, we show some preliminary evidence that continual models can benefit from such realistic learning scenarios.
LitLLM: A Toolkit for Scientific Literature Review
Agarwal, Shubham, Laradji, Issam H., Charlin, Laurent, Pal, Christopher
Conducting literature reviews for scientific papers is essential for understanding research, its limitations, and building on existing work. It is a tedious task which makes an automatic literature review generator appealing. Unfortunately, many existing works that generate such reviews using Large Language Models (LLMs) have significant limitations. They tend to hallucinate-generate non-actual information-and ignore the latest research they have not been trained on. To address these limitations, we propose a toolkit that operates on Retrieval Augmented Generation (RAG) principles, specialized prompting and instructing techniques with the help of LLMs. Our system first initiates a web search to retrieve relevant papers by summarizing user-provided abstracts into keywords using an off-the-shelf LLM. Authors can enhance the search by supplementing it with relevant papers or keywords, contributing to a tailored retrieval process. Second, the system re-ranks the retrieved papers based on the user-provided abstract. Finally, the related work section is generated based on the re-ranked results and the abstract. There is a substantial reduction in time and effort for literature review compared to traditional methods, establishing our toolkit as an efficient alternative. Our open-source toolkit is accessible at https://github.com/shubhamagarwal92/LitLLM and Huggingface space (https://huggingface.co/spaces/shubhamagarwal92/LitLLM) with the video demo at https://youtu.be/E2ggOZBAFw0.
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
Deleu, Tristan, Nishikawa-Toomey, Mizu, Subramanian, Jithendaraa, Malkin, Nikolay, Charlin, Laurent, Bengio, Yoshua
Generative Flow Networks (GFlowNets), a class of generative models over discrete and structured sample spaces, have been previously applied to the problem of inferring the marginal posterior distribution over the directed acyclic graph (DAG) of a Bayesian Network, given a dataset of observations. Based on recent advances extending this framework to non-discrete sample spaces, we propose in this paper to approximate the joint posterior over not only the structure of a Bayesian Network, but also the parameters of its conditional probability distributions. We use a single GFlowNet whose sampling policy follows a two-phase process: the DAG is first generated sequentially one edge at a time, and then the corresponding parameters are picked once the full structure is known. Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models of the Bayesian Network, making our approach applicable even to non-linear models parametrized by neural networks. We show that our method, called JSP-GFN, offers an accurate approximation of the joint posterior, while comparing favorably against existing methods on both simulated and real data.
Improving the generalizability and robustness of large-scale traffic signal control
Shi, Tianyu, Devailly, Francois-Xavier, Larocque, Denis, Charlin, Laurent
A number of deep reinforcement-learning (RL) approaches propose to control traffic signals. In this work, we study the robustness of such methods along two axes. First, sensor failures and GPS occlusions create missing-data challenges and we show that recent methods remain brittle in the face of these missing data. Second, we provide a more systematic study of the generalization ability of RL methods to new networks with different traffic regimes. Again, we identify the limitations of recent approaches. We then propose using a combination of distributional and vanilla reinforcement learning through a policy ensemble. Building upon the state-of-the-art previous model which uses a decentralized approach for large-scale traffic signal control with graph convolutional networks (GCNs), we first learn models using a distributional reinforcement learning (DisRL) approach. In particular, we use implicit quantile networks (IQN) to model the state-action return distribution with quantile regression. For traffic signal control problems, an ensemble of standard RL and DisRL yields superior performance across different scenarios, including different levels of missing sensor data and traffic flow patterns. Furthermore, the learning scheme of the resulting model can improve zero-shot transferability to different road network structures, including both synthetic networks and real-world networks (e.g., Luxembourg, Manhattan). We conduct extensive experiments to compare our approach to multi-agent reinforcement learning and traditional transportation approaches. Results show that the proposed method improves robustness and generalizability in the face of missing data, varying road networks, and traffic flows.
Sequoia: A Software Framework to Unify Continual Learning Research
Normandin, Fabrice, Golemo, Florian, Ostapenko, Oleksiy, Rodriguez, Pau, Riemer, Matthew D, Hurtado, Julio, Khetarpal, Khimya, Lindeborg, Ryan, Cecchi, Lucas, Lesort, Timothรฉe, Charlin, Laurent, Rish, Irina, Caccia, Massimo
The field of Continual Learning (CL) seeks to develop algorithms that accumulate knowledge and skills over time through interaction with non-stationary environments. In practice, a plethora of evaluation procedures (settings) and algorithmic solutions (methods) exist, each with their own potentially disjoint set of assumptions. This variety makes measuring progress in CL difficult. We propose a taxonomy of settings, where each setting is described as a set of assumptions. A tree-shaped hierarchy emerges from this view, where more general settings become the parents of those with more restrictive assumptions. This makes it possible to use inheritance to share and reuse research, as developing a method for a given setting also makes it directly applicable onto any of its children. We instantiate this idea as a publicly available software framework called Sequoia, which features a wide variety of settings from both the Continual Supervised Learning (CSL) and Continual Reinforcement Learning (CRL) domains. Sequoia also includes a growing suite of methods which are easy to extend and customize, in addition to more specialized methods from external libraries. We hope that this new paradigm and its first implementation can help unify and accelerate research in CL. You can help us grow the tree by visiting www.github.com/lebrice/Sequoia.
Task-Agnostic Continual Reinforcement Learning: Gaining Insights and Overcoming Challenges
Caccia, Massimo, Mueller, Jonas, Kim, Taesup, Charlin, Laurent, Fakoor, Rasool
Continual learning (CL) enables the development of models and agents that learn from a sequence of tasks while addressing the limitations of standard deep learning approaches, such as catastrophic forgetting. In this work, we investigate the factors that contribute to the performance differences between task-agnostic CL and multi-task (MTL) agents. We pose two hypotheses: (1) task-agnostic methods might provide advantages in settings with limited data, computation, or high dimensionality, and (2) faster adaptation may be particularly beneficial in continual learning settings, helping to mitigate the effects of catastrophic forgetting. To investigate these hypotheses, we introduce a replay-based recurrent reinforcement learning (3RL) methodology for task-agnostic CL agents. We assess 3RL on a synthetic task and the Meta-World benchmark, which includes 50 unique manipulation tasks. Our results demonstrate that 3RL outperforms baseline methods and can even surpass its multi-task equivalent in challenging settings with high dimensionality. We also show that the recurrent task-agnostic agent consistently outperforms or matches the performance of its transformer-based counterpart. These findings provide insights into the advantages of task-agnostic CL over task-aware MTL approaches and highlight the potential of task-agnostic methods in resource-constrained, high-dimensional, and multi-task environments.