Goto

Collaborating Authors

 Changshui Zhang


Connectionist Temporal Classification with Maximum Entropy Regularization

Neural Information Processing Systems

Connectionist Temporal Classification (CTC) is an objective function for end-toend sequence learning, which adopts dynamic programming algorithms to directly learn the mapping between sequences. CTC has shown promising results in many sequence learning applications including speech recognition and scene text recognition. However, CTC tends to produce highly peaky and overconfident distributions, which is a symptom of overfitting. To remedy this, we propose a regularization method based on maximum conditional entropy which penalizes peaky distributions and encourages exploration. We also introduce an entropybased pruning method to dramatically reduce the number of CTC feasible paths by ruling out unreasonable alignments. Experiments on scene text recognition show that our proposed methods consistently improve over the CTC baseline without the need to adjust training settings.



Subspace Attack: Exploiting Promising Subspaces for Query-Efficient Black-box Attacks

Neural Information Processing Systems

Unlike the white-box counterparts that are widely studied and readily accessible, adversarial examples in black-box settings are generally more Herculean on account of the difficulty of estimating gradients. Many methods achieve the task by issuing numerous queries to target classification systems, which makes the whole procedure costly and suspicious to the systems. In this paper, we aim at reducing the query complexity of black-box attacks in this category. We propose to exploit gradients of a few reference models which arguably span some promising search subspaces. Experimental results show that, in comparison with the state-of-the-arts, our method can gain up to 2 and 4 reductions in the requisite mean and medium numbers of queries with much lower failure rates even if the reference models are trained on a small and inadequate dataset disjoint to the one for training the victim model. Code and models for reproducing our results are available at https://github.


Subspace Attack: Exploiting Promising Subspaces for Query-Efficient Black-box Attacks

Neural Information Processing Systems

Unlike the white-box counterparts that are widely studied and readily accessible, adversarial examples in black-box settings are generally more Herculean on account of the difficulty of estimating gradients. Many methods achieve the task by issuing numerous queries to target classification systems, which makes the whole procedure costly and suspicious to the systems. In this paper, we aim at reducing the query complexity of black-box attacks in this category. We propose to exploit gradients of a few reference models which arguably span some promising search subspaces. Experimental results show that, in comparison with the state-of-the-arts, our method can gain up to 2 and 4 reductions in the requisite mean and medium numbers of queries with much lower failure rates even if the reference models are trained on a small and inadequate dataset disjoint to the one for training the victim model. Code and models for reproducing our results are available at https://github.


Connectionist Temporal Classification with Maximum Entropy Regularization

Neural Information Processing Systems

Connectionist Temporal Classification (CTC) is an objective function for end-toend sequence learning, which adopts dynamic programming algorithms to directly learn the mapping between sequences. CTC has shown promising results in many sequence learning applications including speech recognition and scene text recognition. However, CTC tends to produce highly peaky and overconfident distributions, which is a symptom of overfitting. To remedy this, we propose a regularization method based on maximum conditional entropy which penalizes peaky distributions and encourages exploration. We also introduce an entropybased pruning method to dramatically reduce the number of CTC feasible paths by ruling out unreasonable alignments. Experiments on scene text recognition show that our proposed methods consistently improve over the CTC baseline without the need to adjust training settings.


Sparse DNNs with Improved Adversarial Robustness

Neural Information Processing Systems

By converting dense models into sparse ones, pruning appears to be a promising solution to reducing the computation/memory cost. This paper studies classification models, especially DNN-based ones, to demonstrate that there exists intrinsic relationships between their sparsity and adversarial robustness.