Chang, Xiaojun
RoomTour3D: Geometry-Aware Video-Instruction Tuning for Embodied Navigation
Han, Mingfei, Ma, Liang, Zhumakhanova, Kamila, Radionova, Ekaterina, Zhang, Jingyi, Chang, Xiaojun, Liang, Xiaodan, Laptev, Ivan
Vision-and-Language Navigation (VLN) suffers from the limited diversity and scale of training data, primarily constrained by the manual curation of existing simulators. To address this, we introduce RoomTour3D, a video-instruction dataset derived from web-based room tour videos that capture real-world indoor spaces and human walking demonstrations. Unlike existing VLN datasets, RoomTour3D leverages the scale and diversity of online videos to generate open-ended human walking trajectories and open-world navigable instructions. To compensate for the lack of navigation data in online videos, we perform 3D reconstruction and obtain 3D trajectories of walking paths augmented with additional information on the room types, object locations and 3D shape of surrounding scenes. Our dataset includes $\sim$100K open-ended description-enriched trajectories with $\sim$200K instructions, and 17K action-enriched trajectories from 1847 room tour environments. We demonstrate experimentally that RoomTour3D enables significant improvements across multiple VLN tasks including CVDN, SOON, R2R, and REVERIE. Moreover, RoomTour3D facilitates the development of trainable zero-shot VLN agents, showcasing the potential and challenges of advancing towards open-world navigation.
StoryAgent: Customized Storytelling Video Generation via Multi-Agent Collaboration
Hu, Panwen, Jiang, Jin, Chen, Jianqi, Han, Mingfei, Liao, Shengcai, Chang, Xiaojun, Liang, Xiaodan
The advent of AI-Generated Content (AIGC) has spurred research into automated video generation to streamline conventional processes. However, automating storytelling video production, particularly for customized narratives, remains challenging due to the complexity of maintaining subject consistency across shots. While existing approaches like Mora and AesopAgent integrate multiple agents for Story-to-Video (S2V) generation, they fall short in preserving protagonist consistency and supporting Customized Storytelling Video Generation (CSVG). To address these limitations, we propose StoryAgent, a multi-agent framework designed for CSVG. StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process. Notably, our framework includes agents for story design, storyboard generation, video creation, agent coordination, and result evaluation. Leveraging the strengths of different models, StoryAgent enhances control over the generation process, significantly improving character consistency. Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency, while a novel storyboard generation pipeline is proposed to maintain subject consistency across shots. Extensive experiments demonstrate the effectiveness of our approach in synthesizing highly consistent storytelling videos, outperforming state-of-the-art methods. Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
Dual Conditional Diffusion Models for Sequential Recommendation
Huang, Hongtao, Huang, Chengkai, Chang, Xiaojun, Hu, Wen, Yao, Lina
Recent advancements in diffusion models have shown promising results in sequential recommendation (SR). However, current diffusion-based methods still exhibit two key limitations. First, they implicitly model the diffusion process for target item embeddings rather than the discrete target item itself, leading to inconsistency in the recommendation process. Second, existing methods rely on either implicit or explicit conditional diffusion models, limiting their ability to fully capture the context of user behavior and leading to less robust target item embeddings. In this paper, we propose the Dual Conditional Diffusion Models for Sequential Recommendation (DCRec), introducing a discrete-to-continuous sequential recommendation diffusion framework. Our framework introduces a complete Markov chain to model the transition from the reversed target item representation to the discrete item index, bridging the discrete and continuous item spaces for diffusion models and ensuring consistency with the diffusion framework. Building on this framework, we present the Dual Conditional Diffusion Transformer (DCDT) that incorporates the implicit conditional and the explicit conditional for diffusion-based SR. Extensive experiments on public benchmark datasets demonstrate that DCRec outperforms state-of-the-art methods.
ContextDet: Temporal Action Detection with Adaptive Context Aggregation
Wang, Ning, Xiao, Yun, Peng, Xiaopeng, Chang, Xiaojun, Wang, Xuanhong, Fang, Dingyi
Temporal action detection (TAD), which locates and recognizes action segments, remains a challenging task in video understanding due to variable segment lengths and ambiguous boundaries. Existing methods treat neighboring contexts of an action segment indiscriminately, leading to imprecise boundary predictions. We introduce a single-stage ContextDet framework, which makes use of large-kernel convolutions in TAD for the first time. Our model features a pyramid adaptive context aggragation (ACA) architecture, capturing long context and improving action discriminability. Each ACA level consists of two novel modules. The context attention module (CAM) identifies salient contextual information, encourages context diversity, and preserves context integrity through a context gating block (CGB). The long context module (LCM) makes use of a mixture of large- and small-kernel convolutions to adaptively gather long-range context and fine-grained local features. Additionally, by varying the length of these large kernels across the ACA pyramid, our model provides lightweight yet effective context aggregation and action discrimination. We conducted extensive experiments and compared our model with a number of advanced TAD methods on six challenging TAD benchmarks: MultiThumos, Charades, FineAction, EPIC-Kitchens 100, Thumos14, and HACS, demonstrating superior accuracy at reduced inference speed.
Efficient Training of Large Vision Models via Advanced Automated Progressive Learning
Li, Changlin, Zhang, Jiawei, Lin, Sihao, Yang, Zongxin, Liang, Junwei, Liang, Xiaodan, Chang, Xiaojun
The rapid advancements in Large Vision Models (LVMs), such as Vision Transformers (ViTs) and diffusion models, have led to an increasing demand for computational resources, resulting in substantial financial and environmental costs. This growing challenge highlights the necessity of developing efficient training methods for LVMs. Progressive learning, a training strategy in which model capacity gradually increases during training, has shown potential in addressing these challenges. In this paper, we present an advanced automated progressive learning (AutoProg) framework for efficient training of LVMs. We begin by focusing on the pre-training of LVMs, using ViTs as a case study, and propose AutoProg-One, an AutoProg scheme featuring momentum growth (MoGrow) and a one-shot growth schedule search. Beyond pre-training, we extend our approach to tackle transfer learning and fine-tuning of LVMs. We expand the scope of AutoProg to cover a wider range of LVMs, including diffusion models. First, we introduce AutoProg-Zero, by enhancing the AutoProg framework with a novel zero-shot unfreezing schedule search, eliminating the need for one-shot supernet training. Second, we introduce a novel Unique Stage Identifier (SID) scheme to bridge the gap during network growth. These innovations, integrated with the core principles of AutoProg, offer a comprehensive solution for efficient training across various LVM scenarios. Extensive experiments show that AutoProg accelerates ViT pre-training by up to 1.85x on ImageNet and accelerates fine-tuning of diffusion models by up to 2.86x, with comparable or even higher performance. This work provides a robust and scalable approach to efficient training of LVMs, with potential applications in a wide range of vision tasks. Code: https://github.com/changlin31/AutoProg-Zero
Label-anticipated Event Disentanglement for Audio-Visual Video Parsing
Zhou, Jinxing, Guo, Dan, Mao, Yuxin, Zhong, Yiran, Chang, Xiaojun, Wang, Meng
Audio-Visual Video Parsing (AVVP) task aims to detect and temporally locate events within audio and visual modalities. Multiple events can overlap in the timeline, making identification challenging. While traditional methods usually focus on improving the early audio-visual encoders to embed more effective features, the decoding phase -- crucial for final event classification, often receives less attention. We aim to advance the decoding phase and improve its interpretability. Specifically, we introduce a new decoding paradigm, \underline{l}abel s\underline{e}m\underline{a}ntic-based \underline{p}rojection (LEAP), that employs labels texts of event categories, each bearing distinct and explicit semantics, for parsing potentially overlapping events.LEAP works by iteratively projecting encoded latent features of audio/visual segments onto semantically independent label embeddings. This process, enriched by modeling cross-modal (audio/visual-label) interactions, gradually disentangles event semantics within video segments to refine relevant label embeddings, guaranteeing a more discriminative and interpretable decoding process. To facilitate the LEAP paradigm, we propose a semantic-aware optimization strategy, which includes a novel audio-visual semantic similarity loss function. This function leverages the Intersection over Union of audio and visual events (EIoU) as a novel metric to calibrate audio-visual similarities at the feature level, accommodating the varied event densities across modalities. Extensive experiments demonstrate the superiority of our method, achieving new state-of-the-art performance for AVVP and also enhancing the relevant audio-visual event localization task.
SWAP-NAS: Sample-Wise Activation Patterns for Ultra-fast NAS
Peng, Yameng, Song, Andy, Fayek, Haytham M., Ciesielski, Vic, Chang, Xiaojun
Recent studies show that existing training-free metrics have several limitations, such as limited correlation and poor generalisation across different search spaces and tasks. Hence, we propose Sample-Wise Activation Patterns and its derivative, SWAP-Score, a novel high-performance training-free metric. It measures the expressivity of networks over a batch of input samples. The SWAP-Score is strongly correlated with ground-truth performance across various search spaces and tasks, outperforming 15 existing training-free metrics on NAS-Bench-101/201/301 and TransNAS-Bench-101. The SWAP-Score can be further enhanced by regularisation, which leads to even higher correlations in cell-based search space and enables model size control during the search. For example, Spearman's rank correlation coefficient between regularised SWAP-Score and CIFAR-100 validation accuracies on NAS-Bench-201 networks is 0.90, significantly higher than 0.80 from the second-best metric, NWOT. When integrated with an evolutionary algorithm for NAS, our SWAP-NAS achieves competitive performance on CIFAR-10 and ImageNet in approximately 6 minutes and 9 minutes of GPU time respectively. Performance evaluation of neural networks is critical, especially in Neural Architecture Search (NAS) which aims to automatically construct high-performing neural networks for a given task. The conventional approach evaluates candidate networks by feed-forward and back-propagation training. This process typically requires every candidate to be trained on the target dataset until convergence (Liu et al., 2019; Zoph & Le, 2017), and often leads to prohibitively high computational cost (Ren et al., 2022; White et al., 2023). To mitigate this cost, several alternatives have been introduced, such as performance predictors, architecture comparators and weight-sharing strategies. A divergent approach is the use of training-free metrics, also known as zero-cost proxies (Chen et al., 2021a; Lin et al., 2021; Lopes et al., 2021; Mellor et al., 2021; Mok et al., 2022; Tanaka et al., 2020b; Li et al., 2023). The aim is to eliminate the need for network training entirely. These metrics are either positively or negatively correlated with the networks' ground-truth performance.
Self-Supervised Multi-Frame Neural Scene Flow
Liu, Dongrui, Liu, Daqi, Li, Xueqian, Lin, Sihao, xie, Hongwei, Wang, Bing, Chang, Xiaojun, Chu, Lei
Neural Scene Flow Prior (NSFP) and Fast Neural Scene Flow (FNSF) have shown remarkable adaptability in the context of large out-of-distribution autonomous driving. Despite their success, the underlying reasons for their astonishing generalization capabilities remain unclear. Our research addresses this gap by examining the generalization capabilities of NSFP through the lens of uniform stability, revealing that its performance is inversely proportional to the number of input point clouds. This finding sheds light on NSFP's effectiveness in handling large-scale point cloud scene flow estimation tasks. Motivated by such theoretical insights, we further explore the improvement of scene flow estimation by leveraging historical point clouds across multiple frames, which inherently increases the number of point clouds. Consequently, we propose a simple and effective method for multi-frame point cloud scene flow estimation, along with a theoretical evaluation of its generalization abilities. Our analysis confirms that the proposed method maintains a limited generalization error, suggesting that adding multiple frames to the scene flow optimization process does not detract from its generalizability. Extensive experimental results on large-scale autonomous driving Waymo Open and Argoverse lidar datasets demonstrate that the proposed method achieves state-of-the-art performance.
NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning Disentangled Reasoning
Lin, Bingqian, Nie, Yunshuang, Wei, Ziming, Chen, Jiaqi, Ma, Shikui, Han, Jianhua, Xu, Hang, Chang, Xiaojun, Liang, Xiaodan
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions. Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability. However, their predominant use in an offline manner usually suffers from substantial domain gap between the VLN task and the LLM training corpus. This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision, leading to a significant mitigation of the domain gap in a cost-effective manner. Specifically, at each timestep, the LLM is prompted to forecast the navigational chain-of-thought by: 1) acting as a world model to imagine the next observation according to the instruction, 2) selecting the candidate observation that best aligns with the imagination, and 3) determining the action based on the reasoning from the prior steps. Through constructing formalized labels for training, the LLM can learn to generate desired and reasonable chain-of-thought outputs for improving the action decision. Experimental results across various training settings and popular VLN benchmarks (e.g., Room-to-Room (R2R), Room-across-Room (RxR), Room-for-Room (R4R)) show the significant superiority of NavCoT over the direct action prediction variants. Through simple parameter-efficient finetuning, our NavCoT outperforms a recent GPT4-based approach with ~7% relative improvement on the R2R dataset. We believe that NavCoT will help unlock more task-adaptive and scalable LLM-based embodied agents, which are helpful for developing real-world robotics applications. Code is available at https://github.com/expectorlin/NavCoT.
MatchNAS: Optimizing Edge AI in Sparse-Label Data Contexts via Automating Deep Neural Network Porting for Mobile Deployment
Huang, Hongtao, Chang, Xiaojun, Hu, Wen, Yao, Lina
Recent years have seen the explosion of edge intelligence with powerful Deep Neural Networks (DNNs). One popular scheme is training DNNs on powerful cloud servers and subsequently porting them to mobile devices after being lightweight. Conventional approaches manually specialized DNNs for various edge platforms and retrain them with real-world data. However, as the number of platforms increases, these approaches become labour-intensive and computationally prohibitive. Additionally, real-world data tends to be sparse-label, further increasing the difficulty of lightweight models. In this paper, we propose MatchNAS, a novel scheme for porting DNNs to mobile devices. Specifically, we simultaneously optimise a large network family using both labelled and unlabelled data and then automatically search for tailored networks for different hardware platforms. MatchNAS acts as an intermediary that bridges the gap between cloud-based DNNs and edge-based DNNs.