Chang, Xiaofu
SHORING: Design Provable Conditional High-Order Interaction Network via Symbolic Testing
Li, Hui, Fu, Xing, Wu, Ruofan, Xu, Jinyu, Xiao, Kai, Chang, Xiaofu, Wang, Weiqiang, Chen, Shuai, Shi, Leilei, Xiong, Tao, Qi, Yuan
Deep learning provides a promising way to extract effective representations from raw data in an end-to-end fashion and has proven its effectiveness in various domains such as computer vision, natural language processing, etc. However, in domains such as content/product recommendation and risk management, where sequence of event data is the most used raw data form and experts derived features are more commonly used, deep learning models struggle to dominate the game. In this paper, we propose a symbolic testing framework that helps to answer the question of what kinds of expert-derived features could be learned by a neural network. Inspired by this testing framework, we introduce an efficient architecture named SHORING, which contains two components: \textit{event network} and \textit{sequence network}. The \textit{event} network learns arbitrarily yet efficiently high-order \textit{event-level} embeddings via a provable reparameterization trick, the \textit{sequence} network aggregates from sequence of \textit{event-level} embeddings. We argue that SHORING is capable of learning certain standard symbolic expressions which the standard multi-head self-attention network fails to learn, and conduct comprehensive experiments and ablation studies on four synthetic datasets and three real-world datasets. The results show that SHORING empirically outperforms the state-of-the-art methods.
TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning
Wang, Lu, Chang, Xiaofu, Li, Shuang, Chu, Yunfei, Li, Hui, Zhang, Wei, He, Xiaofeng, Song, Le, Zhou, Jingren, Yang, Hongxia
Dynamic graph modeling has recently attracted much attention due to its extensive applications in many real-world scenarios, such as recommendation systems, financial transactions, and social networks. Although many works have been proposed for dynamic graph modeling in recent years, effective and scalable models are yet to be developed. In this paper, we propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion and enables effective dynamic node representation learning that captures both the temporal and topology information. Technically, our model contains three novel aspects. First, we generalize the vanilla Transformer to temporal graph learning scenarios and design a graph-topology-aware transformer. Secondly, on top of the proposed graph transformer, we introduce a two-stream encoder that separately extracts representations from temporal neighborhoods associated with the two interaction nodes and then utilizes a co-attentional transformer to model inter-dependencies at a semantic level. Lastly, we are inspired by the recently developed contrastive learning and propose to optimize our model by maximizing mutual information (MI) between the predictive representations of two future interaction nodes. Benefiting from this, our dynamic representations can preserve high-level (or global) semantics about interactions and thus is robust to noisy interactions. To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs. We evaluate our model on four benchmark datasets for interaction prediction and experiment results demonstrate the superiority of our model.