Goto

Collaborating Authors

 Chang, Tyler


Leveraging Interpolation Models and Error Bounds for Verifiable Scientific Machine Learning

arXiv.org Machine Learning

Effective verification and validation techniques for modern scientific machine learning workflows are challenging to devise. Statistical methods are abundant and easily deployed, but often rely on speculative assumptions about the data and methods involved. Error bounds for classical interpolation techniques can provide mathematically rigorous estimates of accuracy, but often are difficult or impractical to determine computationally. In this work, we present a best-of-both-worlds approach to verifiable scientific machine learning by demonstrating that (1) multiple standard interpolation techniques have informative error bounds that can be computed or estimated efficiently; (2) comparative performance among distinct interpolants can aid in validation goals; (3) deploying interpolation methods on latent spaces generated by deep learning techniques enables some interpretability for black-box models. We present a detailed case study of our approach for predicting lift-drag ratios from airfoil images. Code developed for this work is available in a public Github repository.


Parallel Multi-Objective Hyperparameter Optimization with Uniform Normalization and Bounded Objectives

arXiv.org Artificial Intelligence

Machine learning (ML) methods offer a wide range of configurable hyperparameters that have a significant influence on their performance. While accuracy is a commonly used performance objective, in many settings, it is not sufficient. Optimizing the ML models with respect to multiple objectives such as accuracy, confidence, fairness, calibration, privacy, latency, and memory consumption is becoming crucial. To that end, hyperparameter optimization, the approach to systematically optimize the hyperparameters, which is already challenging for a single objective, is even more challenging for multiple objectives. In addition, the differences in objective scales, the failures, and the presence of outlier values in objectives make the problem even harder. We propose a multi-objective Bayesian optimization (MoBO) algorithm that addresses these problems through uniform objective normalization and randomized weights in scalarization. We increase the efficiency of our approach by imposing constraints on the objective to avoid exploring unnecessary configurations (e.g., insufficient accuracy). Finally, we leverage an approach to parallelize the MoBO which results in a 5x speed-up when using 16x more workers.


Do Large Language Models know what humans know?

arXiv.org Artificial Intelligence

Humans can attribute beliefs to others. However, it is unknown to what extent this ability results from an innate biological endowment or from experience accrued through child development, particularly exposure to language describing others' mental states. We test the viability of the language exposure hypothesis by assessing whether models exposed to large quantities of human language display sensitivity to the implied knowledge states of characters in written passages. In pre-registered analyses, we present a linguistic version of the False Belief Task to both human participants and a Large Language Model, GPT-3. Both are sensitive to others' beliefs, but while the language model significantly exceeds chance behavior, it does not perform as well as the humans, nor does it explain the full extent of their behavior -- despite being exposed to more language than a human would in a lifetime. This suggests that while statistical learning from language exposure may in part explain how humans develop the ability to reason about the mental states of others, other mechanisms are also responsible.