Plotting

 Chang, Tsung-Hui


Robust Federated Learning in Unreliable Wireless Networks: A Client Selection Approach

arXiv.org Artificial Intelligence

Federated learning (FL) has emerged as a promising distributed learning paradigm for training deep neural networks (DNNs) at the wireless edge, but its performance can be severely hindered by unreliable wireless transmission and inherent data heterogeneity among clients. Existing solutions primarily address these challenges by incorporating wireless resource optimization strategies, often focusing on uplink resource allocation across clients under the assumption of homogeneous client-server network standards. However, these approaches overlooked the fact that mobile clients may connect to the server via diverse network standards (e.g., 4G, 5G, Wi-Fi) with customized configurations, limiting the flexibility of server-side modifications and restricting applicability in real-world commercial networks. This paper presents a novel theoretical analysis about how transmission failures in unreliable networks distort the effective label distributions of local samples, causing deviations from the global data distribution and introducing convergence bias in FL. Our analysis reveals that a carefully designed client selection strategy can mitigate biases induced by network unreliability and data heterogeneity . Motivated by this insight, we propose FedCote, a client selection approach that optimizes client selection probabilities without relying on wireless resource scheduling. Experimental results demonstrate the robustness of FedCote in DNN-based classification tasks under unreliable networks with frequent transmission failures. With rapid advancements in mobile communications and artificial intelligence (AI), edge AI, which leverages locally generated data to train deep neural networks (DNNs) at the wireless edge, has gained significant attention from both academia and industry [1], [2], [3], [4]. A prominent approach in this domain is federated learning (FL), where an edge server coordinates mobile clients in collaboratively training a shared DNN model while ensuring client privacy [5], [6], [7]. However, FL faces a critical challenge due to ubiquitous data heterogeneity across clients, where training data are distributed in a non-i.i.d. and unbalanced manner. If not addressed, data heterogeneity can severely degrade FL performance [8], [9], [10], [11], [12]. Numerous FL algorithms have been proposed to mitigate this issue. For example, FedProx [13] introduced a regularization term in the local objective function to control model divergence, while SCAFFOLD [14] employed control variates to correct local model drift. HFMDS [15] learned essential class-relevant features of real samples to generate an auxiliary synthetic dataset, which was shared among clients for local training, helping to alleviate data heterogeneity .


When GNNs meet symmetry in ILPs: an orbit-based feature augmentation approach

arXiv.org Artificial Intelligence

A common characteristic in integer linear programs (ILPs) is symmetry, allowing variables to be permuted without altering the underlying problem structure. Recently, GNNs have emerged as a promising approach for solving ILPs. However, a significant challenge arises when applying GNNs to ILPs with symmetry: classic GNN architectures struggle to differentiate between symmetric variables, which limits their predictive accuracy. In this work, we investigate the properties of permutation equivariance and invariance in GNNs, particularly in relation to the inherent symmetry of ILP formulations. We reveal that the interaction between these two factors contributes to the difficulty of distinguishing between symmetric variables. To address this challenge, we explore the potential of feature augmentation and propose several guiding principles for constructing augmented features. Building on these principles, we develop an orbit-based augmentation scheme that first groups symmetric variables and then samples augmented features for each group from a discrete uniform distribution. Empirical results demonstrate that our proposed approach significantly enhances both training efficiency and predictive performance. Integer Linear Programs (ILPs) are fundamental optimization problems characterized by a linear objective function and linear constraints, where the decision variables are restricted to integer values. These problems play a critical role in various fields, including operations research, computer science, and engineering (Pochet & Wolsey, 2006; Liu & Fan, 2018; Watson & Woodruff, 2011; Luathep et al., 2011; Schรถbel, 2001).


Tuning-Free Alignment of Diffusion Models with Direct Noise Optimization

arXiv.org Artificial Intelligence

In this work, we focus on the alignment problem of diffusion models with a continuous reward function, which represents specific objectives for downstream tasks, such as improving human preference. The central goal of the alignment problem is to adjust the distribution learned by diffusion models such that the generated samples maximize the target reward function. We propose a novel alignment approach, named Direct Noise Optimization (DNO), that optimizes the injected noise during the sampling process of diffusion models. By design, DNO is tuning-free and prompt-agnostic, as the alignment occurs in an online fashion during generation. We rigorously study the theoretical properties of DNO and also propose variants to deal with non-differentiable reward functions. Furthermore, we identify that naive implementation of DNO occasionally suffers from the out-of-distribution reward hacking problem, where optimized samples have high rewards but are no longer in the support of the pretrained distribution. To remedy this issue, we leverage classical high-dimensional statistics theory and propose to augment the DNO loss with certain probability regularization. We conduct extensive experiments on several popular reward functions trained on human feedback data and demonstrate that the proposed DNO approach achieves state-of-the-art reward scores as well as high image quality, all within a reasonable time budget for generation.


FedLion: Faster Adaptive Federated Optimization with Fewer Communication

arXiv.org Artificial Intelligence

In Federated Learning (FL), a framework to train machine learning models across distributed data, well-known algorithms like FedAvg tend to have slow convergence rates, resulting in high communication costs during training. To address this challenge, we introduce FedLion, an adaptive federated optimization algorithm that seamlessly incorporates key elements from the recently proposed centralized adaptive algorithm, Lion (Chen et al. 2o23), into the FL framework. Through comprehensive evaluations on two widely adopted FL benchmarks, we demonstrate that FedLion outperforms previous state-of-the-art adaptive algorithms, including FAFED (Wu et al. 2023) and FedDA. Moreover, thanks to the use of signed gradients in local training, FedLion substantially reduces data transmission requirements during uplink communication when compared to existing adaptive algorithms, further reducing communication costs. Last but not least, this work also includes a novel theoretical analysis, showcasing that FedLion attains faster convergence rate than established FL algorithms like FedAvg.


Accelerating Parallel Sampling of Diffusion Models

arXiv.org Artificial Intelligence

Diffusion models have emerged as state-of-the-art generative models for image generation. However, sampling from diffusion models is usually time-consuming due to the inherent autoregressive nature of their sampling process. In this work, we propose a novel approach that accelerates the sampling of diffusion models by parallelizing the autoregressive process. Specifically, we reformulate the sampling process as solving a system of triangular nonlinear equations through fixed-point iteration. With this innovative formulation, we explore several systematic techniques to further reduce the iteration steps required by the solving process. Applying these techniques, we introduce ParaTAA, a universal and training-free parallel sampling algorithm that can leverage extra computational and memory resources to increase the sampling speed. Our experiments demonstrate that ParaTAA can decrease the inference steps required by common sequential sampling algorithms such as DDIM and DDPM by a factor of 4~14 times. Notably, when applying ParaTAA with 100 steps DDIM for Stable Diffusion, a widely-used text-to-image diffusion model, it can produce the same images as the sequential sampling in only 7 inference steps.


Improving Radiology Summarization with Radiograph and Anatomy Prompts

arXiv.org Artificial Intelligence

The impression is crucial for the referring physicians to grasp key information since it is concluded from the findings and reasoning of radiologists. To alleviate the workload of radiologists and reduce repetitive human labor in impression writing, many researchers have focused on automatic impression generation. However, recent works on this task mainly summarize the corresponding findings and pay less attention to the radiology images. In clinical, radiographs can provide more detailed valuable observations to enhance radiologists' impression writing, especially for complicated cases. Besides, each sentence in findings usually focuses on single anatomy, so they only need to be matched to corresponding anatomical regions instead of the whole image, which is beneficial for textual and visual features alignment. Therefore, we propose a novel anatomy-enhanced multimodal model to promote impression generation. In detail, we first construct a set of rules to extract anatomies and put these prompts into each sentence to highlight anatomy characteristics. Then, two separate encoders are applied to extract features from the radiograph and findings. Afterward, we utilize a contrastive learning module to align these two representations at the overall level and use a co-attention to fuse them at the sentence level with the help of anatomy-enhanced sentence representation. Finally, the decoder takes the fused information as the input to generate impressions. The experimental results on two benchmark datasets confirm the effectiveness of the proposed method, which achieves state-of-the-art results.


Why Batch Normalization Damage Federated Learning on Non-IID Data?

arXiv.org Artificial Intelligence

As a promising distributed learning paradigm, federated learning (FL) involves training deep neural network (DNN) models at the network edge while protecting the privacy of the edge clients. To train a large-scale DNN model, batch normalization (BN) has been regarded as a simple and effective means to accelerate the training and improve the generalization capability. However, recent findings indicate that BN can significantly impair the performance of FL in the presence of non-i.i.d. data. While several FL algorithms have been proposed to address this issue, their performance still falls significantly when compared to the centralized scheme. Furthermore, none of them have provided a theoretical explanation of how the BN damages the FL convergence. In this paper, we present the first convergence analysis to show that under the non-i.i.d. data, the mismatch between the local and global statistical parameters in BN causes the gradient deviation between the local and global models, which, as a result, slows down and biases the FL convergence. In view of this, we develop a new FL algorithm that is tailored to BN, called FedTAN, which is capable of achieving robust FL performance under a variety of data distributions via iterative layer-wise parameter aggregation. Comprehensive experimental results demonstrate the superiority of the proposed FedTAN over existing baselines for training BN-based DNN models.


Zeroth-Order Optimization Meets Human Feedback: Provable Learning via Ranking Oracles

arXiv.org Artificial Intelligence

In this paper, we focus on a novel optimization problem in which the objective function is a black-box and can only be evaluated through a ranking oracle. This problem is common in real-world applications, particularly in cases where the function is assessed by human judges. Reinforcement Learning with Human Feedback (RLHF) is a prominent example of such an application, which is adopted by the recent works \cite{ouyang2022training,liu2023languages,chatgpt,bai2022training} to improve the quality of Large Language Models (LLMs) with human guidance. We propose ZO-RankSGD, a first-of-its-kind zeroth-order optimization algorithm, to solve this optimization problem with a theoretical guarantee. Specifically, our algorithm employs a new rank-based random estimator for the descent direction and is proven to converge to a stationary point. ZO-RankSGD can also be directly applied to the policy search problem in reinforcement learning when only a ranking oracle of the episode reward is available. This makes ZO-RankSGD a promising alternative to existing RLHF methods, as it optimizes in an online fashion and thus can work without any pre-collected data. Furthermore, we demonstrate the effectiveness of ZO-RankSGD in a novel application: improving the quality of images generated by a diffusion generative model with human ranking feedback. Throughout experiments, we found that ZO-RankSGD can significantly enhance the detail of generated images with only a few rounds of human feedback. Overall, our work advances the field of zeroth-order optimization by addressing the problem of optimizing functions with only ranking feedback, and offers an effective approach for aligning human and machine intentions in a wide range of domains. Our code is released here \url{https://github.com/TZW1998/Taming-Stable-Diffusion-with-Human-Ranking-Feedback}.


$z$-SignFedAvg: A Unified Stochastic Sign-based Compression for Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) is a promising privacy-preserving distributed learning paradigm but suffers from high communication cost when training large-scale machine learning models. Sign-based methods, such as SignSGD \cite{bernstein2018signsgd}, have been proposed as a biased gradient compression technique for reducing the communication cost. However, sign-based algorithms could diverge under heterogeneous data, which thus motivated the development of advanced techniques, such as the error-feedback method and stochastic sign-based compression, to fix this issue. Nevertheless, these methods still suffer from slower convergence rates. Besides, none of them allows multiple local SGD updates like FedAvg \cite{mcmahan2017communication}. In this paper, we propose a novel noisy perturbation scheme with a general symmetric noise distribution for sign-based compression, which not only allows one to flexibly control the tradeoff between gradient bias and convergence performance, but also provides a unified viewpoint to existing stochastic sign-based methods. More importantly, the unified noisy perturbation scheme enables the development of the very first sign-based FedAvg algorithm ($z$-SignFedAvg) to accelerate the convergence. Theoretically, we show that $z$-SignFedAvg achieves a faster convergence rate than existing sign-based methods and, under the uniformly distributed noise, can enjoy the same convergence rate as its uncompressed counterpart. Extensive experiments are conducted to demonstrate that the $z$-SignFedAvg can achieve competitive empirical performance on real datasets and outperforms existing schemes.


Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated Learning Framework

arXiv.org Artificial Intelligence

As a novel distributed learning paradigm, federated learning (FL) faces serious challenges in dealing with massive clients with heterogeneous data distribution and computation and communication resources. Various client-variance-reduction schemes and client sampling strategies have been respectively introduced to improve the robustness of FL. Among others, primal-dual algorithms such as the alternating direction of method multipliers (ADMM) have been found being resilient to data distribution and outperform most of the primal-only FL algorithms. However, the reason behind remains a mystery still. In this paper, we firstly reveal the fact that the federated ADMM is essentially a client-variance-reduced algorithm. While this explains the inherent robustness of federated ADMM, the vanilla version of it lacks the ability to be adaptive to the degree of client heterogeneity. Besides, the global model at the server under client sampling is biased which slows down the practical convergence. To go beyond ADMM, we propose a novel primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model. In addition, FedVRA unifies several representative FL algorithms in the sense that they are either special instances of FedVRA or are close to it. Extensions of FedVRA to semi/un-supervised learning are also presented. Experiments based on (semi-)supervised image classification tasks demonstrate superiority of FedVRA over the existing schemes in learning scenarios with massive heterogeneous clients and client sampling.