Goto

Collaborating Authors

 Chang, Ruidi


SAFR: Neuron Redistribution for Interpretability

arXiv.org Artificial Intelligence

Superposition refers to encoding representations of multiple features within a single neuron, which is common in deep neural networks. This property allows neurons to combine and represent multiple features, enabling the model to capture intricate information and handle complex tasks. Despite promising performance, the model's interpretability has been diminished. This paper presents a novel approach to enhance model interpretability by regularizing feature superposition. We introduce SAFR, which simply applies regularizations to the loss function to promote monosemantic representations for important tokens while encouraging polysemanticity for correlated token pairs, where important tokens and correlated token pairs are identified via VMASK and attention weights respectively. We evaluate SAFR with a transformer model on two classification tasks. Experiments demonstrate the effectiveness of SAFR in improving model interpretability without compromising prediction performance. Besides, SAFR provides explanations by visualizing the neuron allocation within the intermediate layers.


Language Models are Symbolic Learners in Arithmetic

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are thought to struggle with arithmetic learning due to the inherent differences between language modeling and numerical computation, but concrete evidence has been lacking. This work responds to this claim through a two-side experiment. We first investigate whether LLMs leverage partial products during arithmetic learning. We find that although LLMs can identify some partial products after learning, they fail to leverage them for arithmetic tasks, conversely. We then explore how LLMs approach arithmetic symbolically by breaking tasks into subgroups, hypothesizing that difficulties arise from subgroup complexity and selection. Our results show that when subgroup complexity is fixed, LLMs treat a collection of different arithmetic operations similarly. By analyzing position-level accuracy across different training sizes, we further observe that it follows a U-shaped pattern: LLMs quickly learn the easiest patterns at the first and last positions, while progressively learning the more difficult patterns in the middle positions. This suggests that LLMs select subgroup following an easy-to-hard paradigm during learning. Our work confirms that LLMs are pure symbolic learners in arithmetic tasks and underscores the importance of understanding them deeply through subgroup-level quantification.


Large Language Model based Multi-Agents: A Survey of Progress and Challenges

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks. Due to the impressive planning and reasoning abilities of LLMs, they have been used as autonomous agents to do many tasks automatically. Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation. To provide the community with an overview of this dynamic field, we present this survey to offer an in-depth discussion on the essential aspects of multi-agent systems based on LLMs, as well as the challenges. Our goal is for readers to gain substantial insights on the following questions: What domains and environments do LLM-based multi-agents simulate? How are these agents profiled and how do they communicate? What mechanisms contribute to the growth of agents' capacities? For those interested in delving into this field of study, we also summarize the commonly used datasets or benchmarks for them to have convenient access. To keep researchers updated on the latest studies, we maintain an open-source GitHub repository, dedicated to outlining the research on LLM-based multi-agent systems.