Chang, Rong-Ching
Polarized Online Discourse on Abortion: Frames and Hostile Expressions among Liberals and Conservatives
Rao, Ashwin, Chang, Rong-Ching, Zhong, Qiankun, Lerman, Kristina, Wojcieszak, Magdalena
Abortion has been one of the most divisive issues in the United States. Yet, missing is comprehensive longitudinal evidence on how political divides on abortion are reflected in public discourse over time, on a national scale, and in response to key events before and after the overturn of Roe v Wade. We analyze a corpus of over 3.5M tweets related to abortion over the span of one year (January 2022 to January 2023) from over 1.1M users. We estimate users' ideology and rely on state-of-the-art transformer-based classifiers to identify expressions of hostility and extract five prominent frames surrounding abortion. We use those data to examine (a) how prevalent were expressions of hostility (i.e., anger, toxic speech, insults, obscenities, and hate speech), (b) what frames liberals and conservatives used to articulate their positions on abortion, and (c) the prevalence of hostile expressions in liberals and conservative discussions of these frames. We show that liberals and conservatives largely mirrored each other's use of hostile expressions: as liberals used more hostile rhetoric, so did conservatives, especially in response to key events. In addition, the two groups used distinct frames and discussed them in vastly distinct contexts, suggesting that liberals and conservatives have differing perspectives on abortion. Lastly, frames favored by one side provoked hostile reactions from the other: liberals use more hostile expressions when addressing religion, fetal personhood, and exceptions to abortion bans, whereas conservatives use more hostile language when addressing bodily autonomy and women's health. This signals disrespect and derogation, which may further preclude understanding and exacerbate polarization.
Anger Breeds Controversy: Analyzing Controversy and Emotions on Reddit
Chen, Kai, He, Zihao, Chang, Rong-Ching, May, Jonathan, Lerman, Kristina
Emotions play an important role in interpersonal interactions and social conflict, yet their function in the development of controversy and disagreement in online conversations has not been explored. To address this gap, we study controversy on Reddit, a popular network of online discussion forums. We collect discussions from a wide variety of topical forums and use emotion detection to recognize a range of emotions from text, including anger, fear, joy, admiration, etc. Our study has three main findings. First, controversial comments express more anger and less admiration, joy and optimism than non-controversial comments. Second, controversial comments affect emotions of downstream comments in a discussion, usually resulting in long-term increase in anger and a decrease in positive emotions, although the magnitude and direction of emotional change depends on the forum. Finally, we show that emotions help better predict which comments will become controversial. Understanding emotional dynamics of online discussions can help communities to better manage conversations.
Dataset of Propaganda Techniques of the State-Sponsored Information Operation of the People's Republic of China
Chang, Rong-Ching, Lai, Chun-Ming, Chang, Kai-Lai, Lin, Chu-Hsing
The digital media, identified as computational propaganda provides a pathway for propaganda to expand its reach without limit. State-backed propaganda aims to shape the audiences' cognition toward entities in favor of a certain political party or authority. Furthermore, it has become part of modern information warfare used in order to gain an advantage over opponents. Most of the current studies focus on using machine learning, quantitative, and qualitative methods to distinguish if a certain piece of information on social media is propaganda. Mainly conducted on English content, but very little research addresses Chinese Mandarin content. From propaganda detection, we want to go one step further to provide more fine-grained information on propaganda techniques that are applied. In this research, we aim to bridge the information gap by providing a multi-labeled propaganda techniques dataset in Mandarin based on a state-backed information operation dataset provided by Twitter. In addition to presenting the dataset, we apply a multi-label text classification using fine-tuned BERT. Potentially this could help future research in detecting state-backed propaganda online especially in a cross-lingual context and cross platforms identity consolidation.