Chang, Nadine
Enhancing Autonomous Driving Safety with Collision Scenario Integration
Wang, Zi, Lan, Shiyi, Sun, Xinglong, Chang, Nadine, Li, Zhenxin, Yu, Zhiding, Alvarez, Jose M.
Autonomous vehicle safety is crucial for the successful deployment of self-driving cars. However, most existing planning methods rely heavily on imitation learning, which limits their ability to leverage collision data effectively. Moreover, collecting collision or near-collision data is inherently challenging, as it involves risks and raises ethical and practical concerns. In this paper, we propose SafeFusion, a training framework to learn from collision data. Instead of over-relying on imitation learning, SafeFusion integrates safety-oriented metrics during training to enable collision avoidance learning. In addition, to address the scarcity of collision data, we propose CollisionGen, a scalable data generation pipeline to generate diverse, high-quality scenarios using natural language prompts, generative models, and rule-based filtering. Experimental results show that our approach improves planning performance in collision-prone scenarios by 56\% over previous state-of-the-art planners while maintaining effectiveness in regular driving situations. Our work provides a scalable and effective solution for advancing the safety of autonomous driving systems.
Eagle 2: Building Post-Training Data Strategies from Scratch for Frontier Vision-Language Models
Li, Zhiqi, Chen, Guo, Liu, Shilong, Wang, Shihao, VS, Vibashan, Ji, Yishen, Lan, Shiyi, Zhang, Hao, Zhao, Yilin, Radhakrishnan, Subhashree, Chang, Nadine, Sapra, Karan, Deshmukh, Amala Sanjay, Rintamaki, Tuomas, Le, Matthieu, Karmanov, Ilia, Voegtle, Lukas, Fischer, Philipp, Huang, De-An, Roman, Timo, Lu, Tong, Alvarez, Jose M., Catanzaro, Bryan, Kautz, Jan, Tao, Andrew, Liu, Guilin, Yu, Zhiding
Recently, promising progress has been made by open-source vision-language models (VLMs) in bringing their capabilities closer to those of proprietary frontier models. However, most open-source models only publish their final model weights, leaving the critical details of data strategies and implementation largely opaque. In this work, we address VLM post-training from a data-centric perspective, showing the key role of data strategy in developing frontier VLMs. By studying and building our post-training data strategy from scratch, we share detailed insights into the development processes, aiming to benefit the development of competitive models for the open-source community. Our introduced data strategy, together with training recipes and model design, leads to a family of performant VLMs named Eagle2. Specifically, Eagle2-9B achieves state-of-the-art results across various multimodal benchmarks, matching certain competitive models with up to 70B parameters.