Chang, Liang
Learning from Mistakes: Self-correct Adversarial Training for Chinese Unnatural Text Correction
Feng, Xuan, Gu, Tianlong, Liu, Xiaoli, Chang, Liang
Unnatural text correction aims to automatically detect and correct spelling errors or adversarial perturbation errors in sentences. Existing methods typically rely on fine-tuning or adversarial training to correct errors, which have achieved significant success. However, these methods exhibit poor generalization performance due to the difference in data distribution between training data and real-world scenarios, known as the exposure bias problem. In this paper, we propose a self-correct adversarial training framework for \textbf{L}earn\textbf{I}ng from \textbf{MI}s\textbf{T}akes (\textbf{LIMIT}), which is a task- and model-independent framework to correct unnatural errors or mistakes. Specifically, we fully utilize errors generated by the model that are actively exposed during the inference phase, i.e., predictions that are inconsistent with the target. This training method not only simulates potential errors in real application scenarios, but also mitigates the exposure bias of the traditional training process. Meanwhile, we design a novel decoding intervention strategy to maintain semantic consistency. Extensive experimental results on Chinese unnatural text error correction datasets show that our proposed method can correct multiple forms of errors and outperforms the state-of-the-art text correction methods. In addition, extensive results on Chinese and English datasets validate that LIMIT can serve as a plug-and-play defense module and can extend to new models and datasets without further training.
Towards Fair Graph Neural Networks via Graph Counterfactual without Sensitive Attributes
Wang, Xuemin, Gu, Tianlong, Bao, Xuguang, Chang, Liang
Graph-structured data is ubiquitous in today's connected world, driving extensive research in graph analysis. Graph Neural Networks (GNNs) have shown great success in this field, leading to growing interest in developing fair GNNs for critical applications. However, most existing fair GNNs focus on statistical fairness notions, which may be insufficient when dealing with statistical anomalies. Hence, motivated by causal theory, there has been growing attention to mitigating root causes of unfairness utilizing graph counterfactuals. Unfortunately, existing methods for generating graph counterfactuals invariably require the sensitive attribute. Nevertheless, in many real-world applications, it is usually infeasible to obtain sensitive attributes due to privacy or legal issues, which challenge existing methods. In this paper, we propose a framework named Fairwos (improving Fairness without sensitive attributes). In particular, we first propose a mechanism to generate pseudo-sensitive attributes to remedy the problem of missing sensitive attributes, and then design a strategy for finding graph counterfactuals from the real dataset. To train fair GNNs, we propose a method to ensure that the embeddings from the original data are consistent with those from the graph counterfactuals, and dynamically adjust the weight of each pseudo-sensitive attribute to balance its contribution to fairness and utility. Furthermore, we theoretically demonstrate that minimizing the relation between these pseudo-sensitive attributes and the prediction can enable the fairness of GNNs. Experimental results on six real-world datasets show that our approach outperforms state-of-the-art methods in balancing utility and fairness.
Knowledge-Guided Dynamic Modality Attention Fusion Framework for Multimodal Sentiment Analysis
Feng, Xinyu, Lin, Yuming, He, Lihua, Li, You, Chang, Liang, Zhou, Ya
Multimodal Sentiment Analysis (MSA) utilizes multimodal data to infer the users' sentiment. Previous methods focus on equally treating the contribution of each modality or statically using text as the dominant modality to conduct interaction, which neglects the situation where each modality may become dominant. In this paper, we propose a Knowledge-Guided Dynamic Modality Attention Fusion Framework (KuDA) for multimodal sentiment analysis. KuDA uses sentiment knowledge to guide the model dynamically selecting the dominant modality and adjusting the contributions of each modality. In addition, with the obtained multimodal representation, the model can further highlight the contribution of dominant modality through the correlation evaluation loss. Extensive experiments on four MSA benchmark datasets indicate that KuDA achieves state-of-the-art performance and is able to adapt to different scenarios of dominant modality.
Dual-Teacher De-biasing Distillation Framework for Multi-domain Fake News Detection
Li, Jiayang, Feng, Xuan, Gu, Tianlong, Chang, Liang
Multi-domain fake news detection aims to identify whether various news from different domains is real or fake and has become urgent and important. However, existing methods are dedicated to improving the overall performance of fake news detection, ignoring the fact that unbalanced data leads to disparate treatment for different domains, i.e., the domain bias problem. To solve this problem, we propose the Dual-Teacher De-biasing Distillation framework (DTDBD) to mitigate bias across different domains. Following the knowledge distillation methods, DTDBD adopts a teacher-student structure, where pre-trained large teachers instruct a student model. In particular, the DTDBD consists of an unbiased teacher and a clean teacher that jointly guide the student model in mitigating domain bias and maintaining performance. For the unbiased teacher, we introduce an adversarial de-biasing distillation loss to instruct the student model in learning unbiased domain knowledge. For the clean teacher, we design domain knowledge distillation loss, which effectively incentivizes the student model to focus on representing domain features while maintaining performance. Moreover, we present a momentum-based dynamic adjustment algorithm to trade off the effects of two teachers. Extensive experiments on Chinese and English datasets show that the proposed method substantially outperforms the state-of-the-art baseline methods in terms of bias metrics while guaranteeing competitive performance.