Goto

Collaborating Authors

 Chandratreya, Ishaan Preetam


SURFSUP: Learning Fluid Simulation for Novel Surfaces

arXiv.org Artificial Intelligence

Modeling the mechanics of fluid in complex scenes is vital to applications in design, graphics, and robotics. Learning-based methods provide fast and differentiable fluid simulators, however most prior work is unable to accurately model how fluids interact with genuinely novel surfaces not seen during training. We introduce SURFSUP, a framework that represents objects implicitly using signed distance functions (SDFs), rather than an explicit representation of meshes or particles. This continuous representation of geometry enables more accurate simulation of fluid-object interactions over long time periods while simultaneously making computation more efficient. Moreover, SURFSUP trained on simple shape primitives generalizes considerably out-of-distribution, even to complex real-world scenes and objects. Finally, we show we can invert our model to design simple objects to manipulate fluid flow.


Task Bias in Vision-Language Models

arXiv.org Artificial Intelligence

Incidental supervision from language has become a popular approach for learning generic visual representations that can be prompted to perform many recognition tasks in computer vision. We conduct an in-depth exploration of the CLIP model and show that its visual representation is often strongly biased towards solving some tasks more than others. Moreover, which task the representation will be biased towards is unpredictable, with little consistency across images. To resolve this task bias, we show how to learn a visual prompt that guides the representation towards features relevant to their task of interest. Our results show that these visual prompts can be independent of the input image and still effectively provide a conditioning mechanism to steer visual representations towards the desired task.