Chandrasekaran, Balakrishnan


Reasoning with Diagrammatic Representations: A Report on the Spring Symposium

AI Magazine

We report on the spring 1992 symposium on diagrammatic representations in reasoning and problem solving sponsored by the Association for the Advancement of Artificial Intelligence. The symposium brought together psychologists, computer scientists, and philosophers to discuss a range of issues covering both externally represented diagrams and mental images and both psychology -- and AI-related issues. In this article, we develop a framework for thinking about the issues that were the focus of the symposium as well as report on the discussions that took place. We anticipate that traditional symbolic representations will increasingly be combined with iconic representations in future AI research and technology and that this symposium is simply the first of many that will be devoted to this topic.


Design Problem Solving: A Task Analysis

AI Magazine

I propose a task structure for design by analyzing a general class of methods that I call propose-critique-modify methods. The task structure is constructed by identifying a range of methods for each task. This recursive style of analysis provides a framework in which we can understand a number of particular proposals for design problem solving as specific combinations of tasks, methods, and subtasks. The analysis shows that there is no one ideal method for design, and good design problem solving is a result of recursively selecting methods based on a number of criteria, including knowledge availability.


Connectionism and Information Processing Abstractions

AI Magazine

Connectionism challenges a basic assumption of much of AI, that mental processes are best viewed as algorithmic symbol manipulations. Connectionism replaces symbol structures with distributed representations in the form of weights between units. For problems close to the architecture of the underlying machines, connectionist and symbolic approaches can make different representational commitments for a task and, thus, can constitute different theories. The connectionist hope of using learning to obviate explicit specification of this content is undermined by the problem of programming appropriate initial connectionist architectures so that they can in fact learn.


Theoretical Issues in Conceptual Information Processing

AI Magazine

The Fifth Annual Theoretical Issues in Conceptual Information Processing Workshop took place in Washington, D.C. in June 1987. About 100 participants gathered to hear several invited talks and panels discussing the issues relating to artificial intelligence and cognitive science.