Chandra, Vikas
An Introduction to Vision-Language Modeling
Bordes, Florian, Pang, Richard Yuanzhe, Ajay, Anurag, Li, Alexander C., Bardes, Adrien, Petryk, Suzanne, Mañas, Oscar, Lin, Zhiqiu, Mahmoud, Anas, Jayaraman, Bargav, Ibrahim, Mark, Hall, Melissa, Xiong, Yunyang, Lebensold, Jonathan, Ross, Candace, Jayakumar, Srihari, Guo, Chuan, Bouchacourt, Diane, Al-Tahan, Haider, Padthe, Karthik, Sharma, Vasu, Xu, Hu, Tan, Xiaoqing Ellen, Richards, Megan, Lavoie, Samuel, Astolfi, Pietro, Hemmat, Reyhane Askari, Chen, Jun, Tirumala, Kushal, Assouel, Rim, Moayeri, Mazda, Talattof, Arjang, Chaudhuri, Kamalika, Liu, Zechun, Chen, Xilun, Garrido, Quentin, Ullrich, Karen, Agrawal, Aishwarya, Saenko, Kate, Celikyilmaz, Asli, Chandra, Vikas
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From having a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
Basis Selection: Low-Rank Decomposition of Pretrained Large Language Models for Target Applications
Li, Yang, Zhao, Changsheng, Lee, Hyungtak, Chang, Ernie, Shi, Yangyang, Chandra, Vikas
Large language models (LLMs) significantly enhance the performance of various applications, but they are computationally intensive and energy-demanding. This makes it challenging to deploy them on devices with limited resources, such as personal computers and mobile/wearable devices, and results in substantial inference costs in resource-rich environments like cloud servers. To extend the use of LLMs, we introduce a low-rank decomposition approach to effectively compress these models, tailored to the requirements of specific applications. We observe that LLMs pretrained on general datasets contain many redundant components not needed for particular applications. Our method focuses on identifying and removing these redundant parts, retaining only the necessary elements for the target applications. Specifically, we represent the weight matrices of LLMs as a linear combination of base components. We then prune the irrelevant bases and enhance the model with new bases beneficial for specific applications. Deep compression results on the Llama 2-7b and -13B models, conducted on target applications including mathematical reasoning and code generation, show that our method significantly reduces model size while maintaining comparable accuracy to state-of-the-art low-rank compression techniques.
Not All Weights Are Created Equal: Enhancing Energy Efficiency in On-Device Streaming Speech Recognition
Li, Yang, Shangguan, Yuan, Wang, Yuhao, Lai, Liangzhen, Chang, Ernie, Zhao, Changsheng, Shi, Yangyang, Chandra, Vikas
Power consumption plays an important role in on-device streaming speech recognition, as it has a direct impact on the user experience. This study delves into how weight parameters in speech recognition models influence the overall power consumption of these models. We discovered that the impact of weight parameters on power consumption varies, influenced by factors including how often they are invoked and their placement in memory. Armed with this insight, we developed design guidelines aimed at optimizing on-device speech recognition models. These guidelines focus on minimizing power use without substantially affecting accuracy. Our method, which employs targeted compression based on the varying sensitivities of weight parameters, demonstrates superior performance compared to state-of-the-art compression methods. It achieves a reduction in energy usage of up to 47% while maintaining similar model accuracy and improving the real-time factor.
Folding Attention: Memory and Power Optimization for On-Device Transformer-based Streaming Speech Recognition
Li, Yang, Lai, Liangzhen, Shangguan, Yuan, Iandola, Forrest N., Ni, Zhaoheng, Chang, Ernie, Shi, Yangyang, Chandra, Vikas
Transformer-based models excel in speech recognition. Existing efforts to optimize Transformer inference, typically for long-context applications, center on simplifying attention score calculations. However, streaming speech recognition models usually process a limited number of tokens each time, making attention score calculation less of a bottleneck. Instead, the bottleneck lies in the linear projection layers of multi-head attention and feedforward networks, constituting a substantial portion of the model size and contributing significantly to computation, memory, and power usage. To address this bottleneck, we propose folding attention, a technique targeting these linear layers, significantly reducing model size and improving memory and power efficiency. Experiments on on-device Transformer-based streaming speech recognition models show that folding attention reduces model size (and corresponding memory consumption) by up to 24% and power consumption by up to 23%, all without compromising model accuracy or computation overhead.
Taming Mode Collapse in Score Distillation for Text-to-3D Generation
Wang, Peihao, Xu, Dejia, Fan, Zhiwen, Wang, Dilin, Mohan, Sreyas, Iandola, Forrest, Ranjan, Rakesh, Li, Yilei, Liu, Qiang, Wang, Zhangyang, Chandra, Vikas
Despite the remarkable performance of score distillation in text-to-3D generation, such techniques notoriously suffer from view inconsistency issues, also known as "Janus" artifact, where the generated objects fake each view with multiple front faces. Although empirically effective methods have approached this problem via score debiasing or prompt engineering, a more rigorous perspective to explain and tackle this problem remains elusive. In this paper, we reveal that the existing score distillation-based text-to-3D generation frameworks degenerate to maximal likelihood seeking on each view independently and thus suffer from the mode collapse problem, manifesting as the Janus artifact in practice. To tame mode collapse, we improve score distillation by re-establishing in entropy term in the corresponding variational objective, which is applied to the distribution of rendered images. Maximizing the entropy encourages diversity among different views in generated 3D assets, thereby mitigating the Janus problem. Based on this new objective, we derive a new update rule for 3D score distillation, dubbed Entropic Score Distillation (ESD). We theoretically reveal that ESD can be simplified and implemented by just adopting the classifier-free guidance trick upon variational score distillation. Although embarrassingly straightforward, our extensive experiments successfully demonstrate that ESD can be an effective treatment for Janus artifacts in score distillation.
TODM: Train Once Deploy Many Efficient Supernet-Based RNN-T Compression For On-device ASR Models
Shangguan, Yuan, Yang, Haichuan, Li, Danni, Wu, Chunyang, Fathullah, Yassir, Wang, Dilin, Dalmia, Ayushi, Krishnamoorthi, Raghuraman, Kalinli, Ozlem, Jia, Junteng, Mahadeokar, Jay, Lei, Xin, Seltzer, Mike, Chandra, Vikas
Automatic Speech Recognition (ASR) models need to be optimized for specific hardware before they can be deployed on devices. This can be done by tuning the model's hyperparameters or exploring variations in its architecture. Re-training and re-validating models after making these changes can be a resource-intensive task. This paper presents TODM (Train Once Deploy Many), a new approach to efficiently train many sizes of hardware-friendly on-device ASR models with comparable GPU-hours to that of a single training job. TODM leverages insights from prior work on Supernet, where Recurrent Neural Network Transducer (RNN-T) models share weights within a Supernet. It reduces layer sizes and widths of the Supernet to obtain subnetworks, making them smaller models suitable for all hardware types. We introduce a novel combination of three techniques to improve the outcomes of the TODM Supernet: adaptive dropouts, an in-place Alpha-divergence knowledge distillation, and the use of ScaledAdam optimizer. We validate our approach by comparing Supernet-trained versus individually tuned Multi-Head State Space Model (MH-SSM) RNN-T using LibriSpeech. Results demonstrate that our TODM Supernet either matches or surpasses the performance of manually tuned models by up to a relative of 3% better in word error rate (WER), while efficiently keeping the cost of training many models at a small constant.
In-Context Prompt Editing For Conditional Audio Generation
Chang, Ernie, Lin, Pin-Jie, Li, Yang, Srinivasan, Sidd, Lan, Gael Le, Kant, David, Shi, Yangyang, Iandola, Forrest, Chandra, Vikas
Distributional shift is a central challenge in the deployment of machine learning models as they can be ill-equipped for real-world data. This is particularly evident in text-to-audio generation where the encoded representations are easily undermined by unseen prompts, which leads to the degradation of generated audio -- the limited set of the text-audio pairs remains inadequate for conditional audio generation in the wild as user prompts are under-specified. In particular, we observe a consistent audio quality degradation in generated audio samples with user prompts, as opposed to training set prompts. To this end, we present a retrieval-based in-context prompt editing framework that leverages the training captions as demonstrative exemplars to revisit the user prompts. We show that the framework enhanced the audio quality across the set of collected user prompts, which were edited with reference to the training captions as exemplars.
On The Open Prompt Challenge In Conditional Audio Generation
Chang, Ernie, Srinivasan, Sidd, Luthra, Mahi, Lin, Pin-Jie, Nagaraja, Varun, Iandola, Forrest, Liu, Zechun, Ni, Zhaoheng, Zhao, Changsheng, Shi, Yangyang, Chandra, Vikas
Text-to-audio generation (TTA) produces audio from a text description, learning from pairs of audio samples and hand-annotated text. However, commercializing audio generation is challenging as user-input prompts are often under-specified when compared to text descriptions used to train TTA models. In this work, we treat TTA models as a ``blackbox'' and address the user prompt challenge with two key insights: (1) User prompts are generally under-specified, leading to a large alignment gap between user prompts and training prompts. (2) There is a distribution of audio descriptions for which TTA models are better at generating higher quality audio, which we refer to as ``audionese''. To this end, we rewrite prompts with instruction-tuned models and propose utilizing text-audio alignment as feedback signals via margin ranking learning for audio improvements. On both objective and subjective human evaluations, we observed marked improvements in both text-audio alignment and music audio quality.
DREAM: A Dynamic Scheduler for Dynamic Real-time Multi-model ML Workloads
Kim, Seah, Kwon, Hyoukjun, Song, Jinook, Jo, Jihyuck, Chen, Yu-Hsin, Lai, Liangzhen, Chandra, Vikas
Emerging real-time multi-model ML (RTMM) workloads such as AR/VR and drone control involve dynamic behaviors in various granularity; task, model, and layers within a model. Such dynamic behaviors introduce new challenges to the system software in an ML system since the overall system load is not completely predictable, unlike traditional ML workloads. In addition, RTMM workloads require real-time processing, involve highly heterogeneous models, and target resource-constrained devices. Under such circumstances, developing an effective scheduler gains more importance to better utilize underlying hardware considering the unique characteristics of RTMM workloads. Therefore, we propose a new scheduler, DREAM, which effectively handles various dynamicity in RTMM workloads targeting multi-accelerator systems. DREAM quantifies the unique requirements for RTMM workloads and utilizes the quantified scores to drive scheduling decisions, considering the current system load and other inference jobs on different models and input frames. DREAM utilizes tunable parameters that provide fast and effective adaptivity to dynamic workload changes. In our evaluation of five scenarios of RTMM workload, DREAM reduces the overall UXCost, which is an equivalent metric of the energy-delay product (EDP) for RTMM defined in the paper, by 32.2% and 50.0% in the geometric mean (up to 80.8% and 97.6%) compared to state-of-the-art baselines, which shows the efficacy of our scheduling methodology.
Enhance audio generation controllability through representation similarity regularization
Shi, Yangyang, Lan, Gael Le, Nagaraja, Varun, Ni, Zhaoheng, Mei, Xinhao, Chang, Ernie, Iandola, Forrest, Liu, Yang, Chandra, Vikas
This paper presents an innovative approach to enhance control over audio generation by emphasizing the alignment between audio and text representations during model training. In the context of language model-based audio generation, the model leverages input from both textual and audio token representations to predict subsequent audio tokens. However, the current configuration lacks explicit regularization to ensure the alignment between the chosen text representation and the language model's predictions. Our proposal involves the incorporation of audio and text representation regularization, particularly during the classifier-free guidance (CFG) phase, where the text condition is excluded from cross attention during language model training. The aim of this proposed representation regularization is to minimize discrepancies in audio and text similarity compared to other samples within the same training batch. Experimental results on both music and audio generation tasks demonstrate that our proposed methods lead to improvements in objective metrics for both audio and music generation, as well as an enhancement in the human perception for audio generation.