Chandra, Rohitash
Large language models for sentiment analysis of newspaper articles during COVID-19: The Guardian
Chandra, Rohitash, Zhu, Baicheng, Fang, Qingying, Shinjikashvili, Eka
During the COVID-19 pandemic, the news media coverage encompassed a wide range of topics that includes viral transmission, allocation of medical resources, and government response measures. There have been studies on sentiment analysis of social media platforms during COVID-19 to understand the public response given the rise of cases and government strategies implemented to control the spread of the virus. Sentiment analysis can provide a better understanding of changes in societal opinions and emotional trends during the pandemic. Apart from social media, newspapers have played a vital role in the dissemination of information, including information from the government, experts, and also the public about various topics. A study of sentiment analysis of newspaper sources during COVID-19 for selected countries can give an overview of how the media covered the pandemic. In this study, we select The Guardian newspaper and provide a sentiment analysis during various stages of COVID-19 that includes initial transmission, lockdowns and vaccination. We employ novel large language models (LLMs) and refine them with expert-labelled sentiment analysis data. We also provide an analysis of sentiments experienced pre-pandemic for comparison. The results indicate that during the early pandemic stages, public sentiment prioritised urgent crisis response, later shifting focus to addressing the impact on health and the economy. In comparison with related studies about social media sentiment analyses, we found a discrepancy between The Guardian with dominance of negative sentiments (sad, annoyed, anxious and denial), suggesting that social media offers a more diversified emotional reflection. We found a grim narrative in The Guardian with overall dominance of negative sentiments, pre and during COVID-19 across news sections including Australia, UK, World News, and Opinion
Self-supervised learning for skin cancer diagnosis with limited training data
Haggerty, Hamish, Chandra, Rohitash
Cancer diagnosis is a well-studied problem in machine learning since early detection of cancer is often the determining factor in prognosis. Supervised deep learning achieves excellent results in cancer image classification, usually through transfer learning. However, these models require large amounts of labelled data and for several types of cancer, large labelled datasets do not exist. In this paper, we demonstrate that a model pre-trained using a self-supervised learning algorithm known as Barlow Twins can outperform the conventional supervised transfer learning pipeline. We juxtapose two base models: i) pretrained in a supervised fashion on ImageNet; ii) pretrained in a self-supervised fashion on ImageNet. Both are subsequently fine tuned on a small labelled skin lesion dataset and evaluated on a large test set. We achieve a mean test accuracy of 70\% for self-supervised transfer in comparison to 66\% for supervised transfer. Interestingly, boosting performance further is possible by self-supervised pretraining a second time (on unlabelled skin lesion images) before subsequent fine tuning. This hints at an alternative path to collecting more labelled data in settings where this is challenging - namely just collecting more unlabelled images. Our framework is applicable to cancer image classification models in the low-labelled data regime.
Large language model for Bible sentiment analysis: Sermon on the Mount
Vora, Mahek, Blau, Tom, Kachhwal, Vansh, Solo, Ashu M. G., Chandra, Rohitash
The revolution of natural language processing via large language models has motivated its use in multidisciplinary areas that include social sciences and humanities and more specifically, comparative religion. Sentiment analysis provides a mechanism to study the emotions expressed in text. Recently, sentiment analysis has been used to study and compare translations of the Bhagavad Gita, which is a fundamental and sacred Hindu text. In this study, we use sentiment analysis for studying selected chapters of the Bible. These chapters are known as the Sermon on the Mount. We utilize a pre-trained language model for sentiment analysis by reviewing five translations of the Sermon on the Mount, which include the King James version, the New International Version, the New Revised Standard Version, the Lamsa Version, and the Basic English Version. We provide a chapter-by-chapter and verse-by-verse comparison using sentiment and semantic analysis and review the major sentiments expressed. Our results highlight the varying sentiments across the chapters and verses. We found that the vocabulary of the respective translations is significantly different. We detected different levels of humour, optimism, and empathy in the respective chapters that were used by Jesus to deliver his message.
A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation
Khan, Azal Ahmad, Chaudhari, Omkar, Chandra, Rohitash
Class imbalance (CI) in classification problems arises when the number of observations belonging to one class is lower than the other. Ensemble learning combines multiple models to obtain a robust model and has been prominently used with data augmentation methods to address class imbalance problems. In the last decade, a number of strategies have been added to enhance ensemble learning and data augmentation methods, along with new methods such as generative adversarial networks (GANs). A combination of these has been applied in many studies, and the evaluation of different combinations would enable a better understanding and guidance for different application domains. In this paper, we present a computational study to evaluate data augmentation and ensemble learning methods used to address prominent benchmark CI problems. We present a general framework that evaluates 9 data augmentation and 9 ensemble learning methods for CI problems. Our objective is to identify the most effective combination for improving classification performance on imbalanced datasets. The results indicate that combinations of data augmentation methods with ensemble learning can significantly improve classification performance on imbalanced datasets. We find that traditional data augmentation methods such as the synthetic minority oversampling technique (SMOTE) and random oversampling (ROS) are not only better in performance for selected CI problems, but also computationally less expensive than GANs. Our study is vital for the development of novel models for handling imbalanced datasets.
Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams
Tavakoli, Mahsa, Chandra, Rohitash, Tian, Fengrui, Bravo, Cristiรกn
Knowing which factors are significant in credit rating assignment leads to better decision-making. However, the focus of the literature thus far has been mostly on structured data, and fewer studies have addressed unstructured or multi-modal datasets. In this paper, we present an analysis of the most effective architectures for the fusion of deep learning models for the prediction of company credit rating classes, by using structured and unstructured datasets of different types. In these models, we tested different combinations of fusion strategies with different deep learning models, including CNN, LSTM, GRU, and BERT. We studied data fusion strategies in terms of level (including early and intermediate fusion) and techniques (including concatenation and cross-attention). Our results show that a CNN-based multi-modal model with two fusion strategies outperformed other multi-modal techniques. In addition, by comparing simple architectures with more complex ones, we found that more sophisticated deep learning models do not necessarily produce the highest performance; however, if attention-based models are producing the best results, cross-attention is necessary as a fusion strategy. Finally, our comparison of rating agencies on short-, medium-, and long-term performance shows that Moody's credit ratings outperform those of other agencies like Standard & Poor's and Fitch Ratings.
Pedestrian Trajectory Prediction Using Dynamics-based Deep Learning
Wang, Honghui, Zhi, Weiming, Batista, Gustavo, Chandra, Rohitash
Pedestrian trajectory prediction plays an important role in autonomous driving systems and robotics. Recent work utilising prominent deep learning models for pedestrian motion prediction makes limited a priori assumptions about human movements, resulting in a lack of explainability and explicit constraints enforced on predicted trajectories. This paper presents a dynamics-based deep learning framework where a novel asymptotically stable dynamical system is integrated into a deep learning model. Our novel asymptotically stable dynamical system is used to model human goal-targeted motion by enforcing the human walking trajectory converges to a predicted goal position and provides a deep learning model with prior knowledge and explainability. Our deep learning model utilises recent innovations from transformer networks and is used to learn some features of human motion, such as collision avoidance, for our proposed dynamical system. The experimental results show that our framework outperforms recent prominent models in pedestrian trajectory prediction on five benchmark human motion datasets.
Reef-insight: A framework for reef habitat mapping with clustering methods via remote sensing
Barve, Saharsh, Webster, Jody M., Chandra, Rohitash
Environmental damage has been of much concern, particularly in coastal areas and the oceans, given climate change and the drastic effects of pollution and extreme climate events. Our present-day analytical capabilities, along with advancements in information acquisition techniques such as remote sensing, can be utilised for the management and study of coral reef ecosystems. In this paper, we present Reef-Insight, an unsupervised machine learning framework that features advanced clustering methods and remote sensing for reef habitat mapping. Our framework compares different clustering methods for reef habitat mapping using remote sensing data. We evaluate four major clustering approaches based on qualitative and visual assessments which include k-means, hierarchical clustering, Gaussian mixture model, and density-based clustering. We utilise remote sensing data featuring the One Tree Island reef in Australia's Southern Great Barrier Reef. Our results indicate that clustering methods using remote sensing data can well identify benthic and geomorphic clusters in reefs when compared with other studies. Our results indicate that Reef-Insight can generate detailed reef habitat maps outlining distinct reef habitats and has the potential to enable further insights for reef restoration projects.
A clustering and graph deep learning-based framework for COVID-19 drug repurposing
Bansal, Chaarvi, Chandra, Rohitash, Agarwal, Vinti, Deepa, P. R.
Drug repurposing (or repositioning) is the process of finding new therapeutic uses for drugs already approved by drug regulatory authorities (e.g., the Food and Drug Administration (FDA) and Therapeutic Goods Administration (TGA)) for other diseases. This involves analyzing the interactions between different biological entities, such as drug targets (genes/proteins and biological pathways) and drug properties, to discover novel drug-target or drug-disease relations. Artificial intelligence methods such as machine learning and deep learning have successfully analyzed complex heterogeneous data in the biomedical domain and have also been used for drug repurposing. This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data. The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19 (category A). The rest are systematically filtered to ensure the safety and efficacy of the treatment (category B). The framework solely relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays. Our machine-learning framework reveals three clusters of interest and provides recommendations featuring the top 15 drugs for COVID-19 drug repurposing, which were shortlisted based on the predicted clusters that were dominated by category A drugs. The anti-COVID efficacy of the drugs should be verified by experimental studies. Our framework can be extended to support other datasets and drug repurposing studies, given open-source code and data availability.
An analysis of vaccine-related sentiments from development to deployment of COVID-19 vaccines
Chandra, Rohitash, Sonawane, Jayesh, Lande, Janhavi, Yu, Cathy
Anti-vaccine sentiments have been well-known and reported throughout the history of viral outbreaks and vaccination programmes. The COVID-19 pandemic had fear and uncertainty about vaccines which has been well expressed on social media platforms such as Twitter. We analyse Twitter sentiments from the beginning of the COVID-19 pandemic and study the public behaviour during the planning, development and deployment of vaccines expressed in tweets worldwide using a sentiment analysis framework via deep learning models. In this way, we provide visualisation and analysis of anti-vaccine sentiments over the course of the COVID-19 pandemic. Our results show a link between the number of tweets, the number of cases, and the change in sentiment polarity scores during major waves of COVID-19 cases. We also found that the first half of the pandemic had drastic changes in the sentiment polarity scores that later stabilised which implies that the vaccine rollout had an impact on the nature of discussions on social media.
Unsupervised machine learning framework for discriminating major variants of concern during COVID-19
Chandra, Rohitash, Bansal, Chaarvi, Kang, Mingyue, Blau, Tom, Agarwal, Vinti, Singh, Pranjal, Wilson, Laurence O. W., Vasan, Seshadri
Due to the high mutation rate of the virus, the COVID-19 pandemic evolved rapidly. Certain variants of the virus, such as Delta and Omicron, emerged with altered viral properties leading to severe transmission and death rates. These variants burdened the medical systems worldwide with a major impact to travel, productivity, and the world economy. Unsupervised machine learning methods have the ability to compress, characterize, and visualize unlabelled data. This paper presents a framework that utilizes unsupervised machine learning methods to discriminate and visualize the associations between major COVID-19 variants based on their genome sequences. These methods comprise a combination of selected dimensionality reduction and clustering techniques. The framework processes the RNA sequences by performing a k-mer analysis on the data and further visualises and compares the results using selected dimensionality reduction methods that include principal component analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE), and uniform manifold approximation projection (UMAP). Our framework also employs agglomerative hierarchical clustering to visualize the mutational differences among major variants of concern and country-wise mutational differences for selected variants (Delta and Omicron) using dendrograms. We also provide country-wise mutational differences for selected variants via dendrograms. We find that the proposed framework can effectively distinguish between the major variants and has the potential to identify emerging variants in the future.