Goto

Collaborating Authors

 Chandra, Rohitash


Multiview graph dual-attention deep learning and contrastive learning for multi-criteria recommender systems

arXiv.org Machine Learning

Recommender systems leveraging deep learning models have been crucial for assisting users in selecting items aligned with their preferences and interests. However, a significant challenge persists in single-criteria recommender systems, which often overlook the diverse attributes of items that have been addressed by Multi-Criteria Recommender Systems (MCRS). Shared embedding vector for multi-criteria item ratings but have struggled to capture the nuanced relationships between users and items based on specific criteria. In this study, we present a novel representation for Multi-Criteria Recommender Systems (MCRS) based on a multi-edge bipartite graph, where each edge represents one criterion rating of items by users, and Multiview Dual Graph Attention Networks (MDGAT). Employing MDGAT is beneficial and important for adequately considering all relations between users and items, given the presence of both local (criterion-based) and global (multi-criteria) relations. Additionally, we define anchor points in each view based on similarity and employ local and global contrastive learning to distinguish between positive and negative samples across each view and the entire graph. We evaluate our method on two real-world datasets and assess its performance based on item rating predictions. The results demonstrate that our method achieves higher accuracy compared to the baseline method for predicting item ratings on the same datasets. MDGAT effectively capture the local and global impact of neighbours and the similarity between nodes.


Convolutional neural networks for mineral prospecting through alteration mapping with remote sensing data

arXiv.org Artificial Intelligence

Traditional geological mapping methods, which rely on field observations and rock sample analysis, are ine fficient for continuous spatial mapping of geological features such as alteration zones. Deep learning models such as convolutional neural networks (CNNs) have ushered in a transformative era in remote sensing data analysis. CNNs excel in automatically extracting features from image data for classification and regression problems. CNNs have the ability to pinpoint specific mineralogical changes attributed to mineralisation processes by discerning subtle features within remote sensing data. Our methodology involves model training using two distinct sets of training samples generated through ground truth data and a fully automated approach through selective principal component analysis (PCA). We also compare CNNs with conventional machine learning models, including k-nearest neighbours, support vector machines, and multilayer perceptron. Our findings indicate that training with a ground truth-based dataset produces more reliable alteration maps. Additionally, we find that CNNs perform slightly better when compared to conventional machine learning models, which further demonstrates the ability of CNNs to capture spatial patterns in remote sensing data e ffectively. We find that Landsat 9 surpasses Landsat 8 in mapping iron oxide areas when employing the CNNs model trained with ground truth data obtained by field surveys. We also observe that using ASTER data with the CNNs model trained on the ground truth-based dataset produces the most accurate maps for two other important types of alteration zones, argillic and propylitic. This underscores the utility of CNNs in enhancing the e fficiency and precision of geological mapping, particularly in discerning subtle alterations indicative of mineralisation processes, especially those associated with critical metal resources. Introduction Geological maps are traditionally crafted through ground surveys and founded on field observations. They frequently incur inevitable errors due to the lack of spatial continuity of the field observations, thus yielding inaccurate representations (Campbell et al., 2005). Recognising these limitations, geologists have been prompted to seek innovative approaches and e fficient methodologies to accurately map geological features, particularly alteration zones (Kesler, 2007; McCuaig et al., 2010). The utilisation of remote sensing data for alteration mapping emerges as a pivotal technique in regional mineral exploration, enabling the precise spatial identification of alteration zones associated with mineralisation processes (Mohamed et al., 2021).


Global Ease of Living Index: a machine learning framework for longitudinal analysis of major economies

arXiv.org Machine Learning

The drastic changes in the global economy, geopolitical conditions, and disruptions such as the COVID-19 pandemic have impacted the cost of living and quality of life. It is important to understand the long-term nature of the cost of living and quality of life in major economies. A transparent and comprehensive living index must include multiple dimensions of living conditions. In this study, we present an approach to quantifying the quality of life through the Global Ease of Living Index that combines various socio-economic and infrastructural factors into a single composite score. Our index utilises economic indicators that define living standards, which could help in targeted interventions to improve specific areas. We present a machine learning framework for addressing the problem of missing data for some of the economic indicators for specific countries. We then curate and update the data and use a dimensionality reduction approach (principal component analysis) to create the Ease of Living Index for major economies since 1970. Our work significantly adds to the literature by offering a practical tool for policymakers to identify areas needing improvement, such as healthcare systems, employment opportunities, and public safety. Our approach with open data and code can be easily reproduced and applied to various contexts. This transparency and accessibility make our work a valuable resource for ongoing research and policy development in quality-of-life assessment.


A Machine Learning Framework for Handling Unreliable Absence Label and Class Imbalance for Marine Stinger Beaching Prediction

arXiv.org Machine Learning

Bluebottles (\textit{Physalia} spp.) are marine stingers resembling jellyfish, whose presence on Australian beaches poses a significant public risk due to their venomous nature. Understanding the environmental factors driving bluebottles ashore is crucial for mitigating their impact, and machine learning tools are to date relatively unexplored. We use bluebottle marine stinger presence/absence data from beaches in Eastern Sydney, Australia, and compare machine learning models (Multilayer Perceptron, Random Forest, and XGBoost) to identify factors influencing their presence. We address challenges such as class imbalance, class overlap, and unreliable absence data by employing data augmentation techniques, including the Synthetic Minority Oversampling Technique (SMOTE), Random Undersampling, and Synthetic Negative Approach that excludes the negative class. Our results show that SMOTE failed to resolve class overlap, but the presence-focused approach effectively handled imbalance, class overlap, and ambiguous absence data. The data attributes such as the wind direction, which is a circular variable, emerged as a key factor influencing bluebottle presence, confirming previous inference studies. However, in the absence of population dynamics, biological behaviours, and life cycles, the best predictive model appears to be Random Forests combined with Synthetic Negative Approach. This research contributes to mitigating the risks posed by bluebottles to beachgoers and provides insights into handling class overlap and unreliable negative class in environmental modelling.


Longitudinal Abuse and Sentiment Analysis of Hollywood Movie Dialogues using LLMs

arXiv.org Artificial Intelligence

Over the past decades, there has been an increasing concern about the prevalence of abusive and violent content in Hollywood movies. This study uses Large Language Models (LLMs) to explore the longitudinal abuse and sentiment analysis of Hollywood Oscar and blockbuster movie dialogues from 1950 to 2024. By employing fine-tuned LLMs, we analyze subtitles for over a thousand movies categorised into four genres to examine the trends and shifts in emotional and abusive content over the past seven decades. Our findings reveal significant temporal changes in movie dialogues, which reflect broader social and cultural influences. Overall, the emotional tendencies in the films are diverse, and the detection of abusive content also exhibits significant fluctuations. The results show a gradual rise in abusive content in recent decades, reflecting social norms and regulatory policy changes. Genres such as thrillers still present a higher frequency of abusive content that emphasises the ongoing narrative role of violence and conflict. At the same time, underlying positive emotions such as humour and optimism remain prevalent in most of the movies. Furthermore, the gradual increase of abusive content in movie dialogues has been significant over the last two decades, where Oscar-nominated movies overtook the top ten blockbusters.


Compact Bayesian Neural Networks via pruned MCMC sampling

arXiv.org Artificial Intelligence

Bayesian Neural Networks (BNNs) offer robust uncertainty quantification in model predictions, but training them presents a significant computational challenge. This is mainly due to the problem of sampling multimodal posterior distributions using Markov Chain Monte Carlo (MCMC) sampling and variational inference algorithms. Moreover, the number of model parameters scales exponentially with additional hidden layers, neurons, and features in the dataset. Typically, a significant portion of these densely connected parameters are redundant and pruning a neural network not only improves portability but also has the potential for better generalisation capabilities. In this study, we address some of the challenges by leveraging MCMC sampling with network pruning to obtain compact probabilistic models having removed redundant parameters. We sample the posterior distribution of model parameters (weights and biases) and prune weights with low importance, resulting in a compact model. We ensure that the compact BNN retains its ability to estimate uncertainty via the posterior distribution while retaining the model training and generalisation performance accuracy by adapting post-pruning resampling. We evaluate the effectiveness of our MCMC pruning strategy on selected benchmark datasets for regression and classification problems through empirical result analysis. We also consider two coral reef drill-core lithology classification datasets to test the robustness of the pruning model in complex real-world datasets. We further investigate if refining compact BNN can retain any loss of performance. Our results demonstrate the feasibility of training and pruning BNNs using MCMC whilst retaining generalisation performance with over 75% reduction in network size. This paves the way for developing compact BNN models that provide uncertainty estimates for real-world applications.


HP-BERT: A framework for longitudinal study of Hinduphobia on social media via LLMs

arXiv.org Artificial Intelligence

During the COVID-19 pandemic, community tensions intensified, fuelling Hinduphobic sentiments and discrimination against individuals of Hindu descent within India and worldwide. Large language models (LLMs) have become prominent in natural language processing (NLP) tasks and social media analysis, enabling longitudinal studies of platforms like X (formerly Twitter) for specific issues during COVID-19. We present an abuse detection and sentiment analysis framework that offers a longitudinal analysis of Hinduphobia on X (Twitter) during and after the COVID-19 pandemic. This framework assesses the prevalence and intensity of Hinduphobic discourse, capturing elements such as derogatory jokes and racist remarks through sentiment analysis and abuse detection from pre-trained and fine-tuned LLMs. Additionally, we curate and publish a "Hinduphobic COVID-19 X (Twitter) Dataset" of 8,000 tweets annotated for Hinduphobic abuse detection, which is used to fine-tune a BERT model, resulting in the development of the Hinduphobic BERT (HP-BERT) model. We then further fine-tune HP-BERT using the SenWave dataset for multi-label sentiment analysis. Our study encompasses approximately 27.4 million tweets from six countries, including Australia, Brazil, India, Indonesia, Japan, and the United Kingdom. Our findings reveal a strong correlation between spikes in COVID-19 cases and surges in Hinduphobic rhetoric, highlighting how political narratives, misinformation, and targeted jokes contributed to communal polarisation. These insights provide valuable guidance for developing strategies to mitigate communal tensions in future crises, both locally and globally. We advocate implementing automated monitoring and removal of such content on social media to curb divisive discourse.


Quantile deep learning models for multi-step ahead time series prediction

arXiv.org Artificial Intelligence

Uncertainty quantification is crucial in time series prediction, and quantile regression offers a valuable mechanism for uncertainty quantification which is useful for extreme value forecasting. Although deep learning models have been prominent in multi-step ahead prediction, the development and evaluation of quantile deep learning models have been limited. We present a novel quantile regression deep learning framework for multi-step time series prediction. In this way, we elevate the capabilities of deep learning models by incorporating quantile regression, thus providing a more nuanced understanding of predictive values. We provide an implementation of prominent deep learning models for multi-step ahead time series prediction and evaluate their performance under high volatility and extreme conditions. We include multivariate and univariate modelling, strategies and provide a comparison with conventional deep learning models from the literature. Our models are tested on two cryptocurrencies: Bitcoin and Ethereum, using daily close-price data and selected benchmark time series datasets. The results show that integrating a quantile loss function with deep learning provides additional predictions for selected quantiles without a loss in the prediction accuracy when compared to the literature. Our quantile model has the ability to handle volatility more effectively and provides additional information for decision-making and uncertainty quantification through the use of quantiles when compared to conventional deep learning models.


Bayes-CATSI: A variational Bayesian deep learning framework for medical time series data imputation

arXiv.org Machine Learning

Medical time series datasets feature missing values that need data imputation methods, however, conventional machine learning models fall short due to a lack of uncertainty quantification in predictions. Among these models, the CATSI (Context-Aware Time Series Imputation) stands out for its effectiveness by incorporating a context vector into the imputation process, capturing the global dependencies of each patient. In this paper, we propose a Bayesian Context-Aware Time Series Imputation (Bayes-CATSI) framework which leverages uncertainty quantification offered by variational inference. We consider the time series derived from electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), electrocardiology (EKG). Variational Inference assumes the shape of the posterior distribution and through minimization of the Kullback-Leibler(KL) divergence it finds variational densities that are closest to the true posterior distribution. Thus , we integrate the variational Bayesian deep learning layers into the CATSI model. Our results show that Bayes-CATSI not only provides uncertainty quantification but also achieves superior imputation performance compared to the CATSI model. Specifically, an instance of Bayes-CATSI outperforms CATSI by 9.57 %. We provide an open-source code implementation for applying Bayes-CATSI to other medical data imputation problems.


Remote sensing framework for geological mapping via stacked autoencoders and clustering

arXiv.org Artificial Intelligence

Supervised machine learning methods for geological mapping via remote sensing face limitations due to the scarcity of accurately labelled training data that can be addressed by unsupervised learning, such as dimensionality reduction and clustering. Dimensionality reduction methods have the potential to play a crucial role in improving the accuracy of geological maps. Although conventional dimensionality reduction methods may struggle with nonlinear data, unsupervised deep learning models such as autoencoders can model non-linear relationships. Stacked autoencoders feature multiple interconnected layers to capture hierarchical data representations useful for remote sensing data. This study presents an unsupervised machine learning-based framework for processing remote sensing data using stacked autoencoders for dimensionality reduction and k-means clustering for mapping geological units. We use Landsat 8, ASTER, and Sentinel-2 datasets to evaluate the framework for geological mapping of the Mutawintji region in Western New South Wales, Australia. We also compare stacked autoencoders with principal component analysis and canonical autoencoders. Our results reveal that the framework produces accurate and interpretable geological maps, efficiently discriminating rock units. We find that the accuracy of stacked autoencoders ranges from 86.6 % to 90 %, depending on the remote sensing data type, which is superior to their counterparts. We also find that the generated maps align with prior geological knowledge of the study area while providing novel insights into geological structures.