Not enough data to create a plot.
Try a different view from the menu above.
Chandra, Rohitash
Surrogate-assisted Bayesian inversion for landscape and basin evolution models
Chandra, Rohitash, Azam, Danial, Kapoor, Arpit, Müller, R. Dietmar
The complex and computationally expensive features of the forward landscape and sedimentary basin evolution models pose a major challenge in the development of efficient inference and optimization methods. Bayesian inference provides a methodology for estimation and uncertainty quantification of free model parameters. In our previous work, parallel tempering Bayeslands was developed as a framework for parameter estimation and uncertainty quantification for the landscape and basin evolution modelling software Badlands. Parallel tempering Bayeslands features high-performance computing with dozens of processing cores running in parallel to enhance computational efficiency. Although parallel computing is used, the procedure remains computationally challenging since thousands of samples need to be drawn and evaluated. In large-scale landscape and basin evolution problems, a single model evaluation can take from several minutes to hours, and in certain cases, even days. Surrogate-assisted optimization has been with successfully applied to a number of engineering problems. This motivates its use in optimisation and inference methods suited for complex models in geology and geophysics. Surrogates can speed up parallel tempering Bayeslands by developing computationally inexpensive surrogates to mimic expensive models. In this paper, we present an application of surrogate-assisted parallel tempering where that surrogate mimics a landscape evolution model including erosion, sediment transport and deposition, by estimating the likelihood function that is given by the model. We employ a machine learning model as a surrogate that learns from the samples generated by the parallel tempering algorithm. The results show that the methodology is effective in lowering the overall computational cost significantly while retaining the quality of solutions.
Efficiency and robustness in Monte Carlo sampling of 3-D geophysical inversions with Obsidian v0.1.2: Setting up for success
Scalzo, Richard, Kohn, David, Olierook, Hugo, Houseman, Gregory, Chandra, Rohitash, Girolami, Mark, Cripps, Sally
The rigorous quantification of uncertainty in geophysical inversions is a challenging problem. Inversions are often ill-posed and the likelihood surface may be multi-modal; properties of any single mode become inadequate uncertainty measures, and sampling methods become inefficient for irregular posteriors or high-dimensional parameter spaces. We explore the influences of different choices made by the practitioner on the efficiency and accuracy of Bayesian geophysical inversion methods that rely on Markov chain Monte Carlo sampling to assess uncertainty, using a multi-sensor inversion of the three-dimensional structure and composition of a region in the Cooper Basin of South Australia as a case study. The inversion is performed using an updated version of the Obsidian distributed inversion software. We find that the posterior for this inversion has complex local covariance structure, hindering the efficiency of adaptive sampling methods that adjust the proposal based on the chain history. Within the context of a parallel-tempered Markov chain Monte Carlo scheme for exploring high-dimensional multi-modal posteriors, a preconditioned Crank-Nicholson proposal outperforms more conventional forms of random walk. Aspects of the problem setup, such as priors on petrophysics or on 3-D geological structure, affect the shape and separation of posterior modes, influencing sampling performance as well as the inversion results. Use of uninformative priors on sensor noise can improve inversion results by enabling optimal weighting among multiple sensors even if noise levels are uncertain. Efficiency could be further increased by using posterior gradient information within proposals, which Obsidian does not currently support, but which could be emulated using posterior surrogates.
Surrogate-assisted parallel tempering for Bayesian neural learning
Chandra, Rohitash, Jain, Konark, Kapoor, Arpit
Parallel tempering addresses some of the drawbacks of canonical Markov Chain Monte-Carlo methods for Bayesian neural learning with the ability to utilize high performance computing. However, certain challenges remain given the large range of network parameters and big data. Surrogate-assisted optimization considers the estimation of an objective function for models given computational inefficiency or difficulty to obtain clear results. We address the inefficiency of parallel tempering for large-scale problems by combining parallel computing features with surrogate assisted estimation of likelihood function that describes the plausibility of a model parameter value, given specific observed data. In this paper, we present surrogate-assisted parallel tempering for Bayesian neural learning where the surrogates are used to estimate the likelihood. The estimation via the surrogate becomes useful rather than evaluating computationally expensive models that feature large number of parameters and datasets. Our results demonstrate that the methodology significantly lowers the computational cost while maintaining quality in decision making using Bayesian neural learning. The method has applications for a Bayesian inversion and uncertainty quantification for a broad range of numerical models.
Langevin-gradient parallel tempering for Bayesian neural learning
Chandra, Rohitash, Jain, Konark, Deo, Ratneel V., Cripps, Sally
Bayesian neural learning feature a rigorous approach to estimation and uncertainty quantification via the posterior distribution of weights that represent knowledge of the neural network. This not only provides point estimates of optimal set of weights but also the ability to quantify uncertainty in decision making using the posterior distribution. Markov chain Monte Carlo (MCMC) techniques are typically used to obtain sample-based estimates of the posterior distribution. However, these techniques face challenges in convergence and scalability, particularly in settings with large datasets and network architectures. This paper address these challenges in two ways. First, parallel tempering is used used to explore multiple modes of the posterior distribution and implemented in multi-core computing architecture. Second, we make within-chain sampling schemes more efficient by using Langevin gradient information in forming Metropolis-Hastings proposal distributions. We demonstrate the techniques using time series prediction and pattern classification applications. The results show that the method not only improves the computational time, but provides better prediction or decision making capabilities when compared to related methods.
Computer vision-based framework for extracting geological lineaments from optical remote sensing data
Farahbakhsh, Ehsan, Chandra, Rohitash, Olierook, Hugo K. H., Scalzo, Richard, Clark, Chris, Reddy, Steven M., Muller, R. Dietmar
The extraction of geological lineaments from digital satellite data is a fundamental application in remote sensing. The location of geological lineaments such as faults and dykes are of interest for a range of applications, particularly because of their association with hydrothermal mineralization. Although a wide range of applications have utilized computer vision techniques, a standard workflow for application of these techniques to mineral exploration is lacking. We present a framework for extracting geological lineaments using computer vision techniques which is a combination of edge detection and line extraction algorithms for extracting geological lineaments using optical remote sensing data. It features ancillary computer vision techniques for reducing data dimensionality, removing noise and enhancing the expression of lineaments. We test the proposed framework on Landsat 8 data of a mineral-rich portion of the Gascoyne Province in Western Australia using different dimension reduction techniques and convolutional filters. To validate the results, the extracted lineaments are compared to our manual photointerpretation and geologically mapped structures by the Geological Survey of Western Australia (GSWA). The results show that the best correlation between our extracted geological lineaments and the GSWA geological lineament map is achieved by applying a minimum noise fraction transformation and a Laplacian filter. Application of a directional filter instead shows a stronger correlation with the output of our manual photointerpretation and known sites of hydrothermal mineralization. Hence, our framework using either filter can be used for mineral prospectivity mapping in other regions where faults are exposed and observable in optical remote sensing data.
BayesLands: A Bayesian inference approach for parameter uncertainty quantification in Badlands
Chandra, Rohitash, Azam, Danial, Müller, R. Dietmar, Salles, Tristan, Cripps, Sally
Bayesian inference provides a principled approach towards uncertainty quantification of free parameters in geophysical forward models. This provides advantages over optimization methods that provide single point estimates as solutions, which lack uncertainty quantification. Badlands (basin and landscape dynamics model) is geophysical forward model that simulates topography development at various space and time scales. Badlands consists of a number of geophysical parameters that need to be estimated with appropriate uncertainty quantification, given the observed ground truth such as surface topography, sediment thickness and stratigraphy through time. This is challenging due to the scarcity of data, sensitivity of the parameters and complexity of the Badlands model. In this paper, we take a Bayesian approach to provide inference using Markov chain Monte Carlo sampling (MCMC). Hence, we present \textit{BayesLands}, a Bayesian framework for Badlands that fuses information obtained from complex forward models with observational data and prior knowledge. As a proof-of-concept, we consider a synthetic and real-world topography with two free parameters, namely precipitation and erodibility, that we need to estimate through BayesLands. The results of the experiments shows that BayesLands yields a promising distribution of the parameters. Moreover, the challenge in sampling due to multi-modality is presented through visualizing a likelihood surface that has a range of suboptimal modes.
Stacked transfer learning for tropical cyclone intensity prediction
Deo, Ratneel Vikash, Chandra, Rohitash, Sharma, Anuraganand
Tropical cyclone wind-intensity prediction is a challenging task considering drastic changes climate patterns over the last few decades. In order to develop robust prediction models, one needs to consider different characteristics of cyclones in terms of spatial and temporal characteristics. Transfer learning incorporates knowledge from a related source dataset to compliment a target datasets especially in cases where there is lack or data. Stacking is a form of ensemble learning focused for improving generalization that has been recently used for transfer learning problems which is referred to as transfer stacking. In this paper, we employ transfer stacking as a means of studying the effects of cyclones whereby we evaluate if cyclones in different geographic locations can be helpful for improving generalization performs. Moreover, we use conventional neural networks for evaluating the effects of duration on cyclones in prediction performance. Therefore, we develop an effective strategy that evaluates the relationships between different types of cyclones through transfer learning and conventional learning methods via neural networks.