Chan-Hon-Tong, Adrien
Packed-Ensemble Surrogate Models for Fluid Flow Estimation Arround Airfoil Geometries
Kalaydjian, Anthony, Balykov, Anton, Semiz, Alexi, Chan-Hon-Tong, Adrien
Physical based simulations can be very time and computationally demanding tasks. One way of accelerating these processes is by making use of data-driven surrogate models that learn from existing simulations. Ensembling methods are particularly relevant in this domain as their smoothness properties coincide with the smoothness of physical phenomena. The drawback is that they can remain costly. This research project focused on studying Packed-Ensembles that generalize Deep Ensembles but remain faster to train. Several models have been trained and compared in terms of multiple important metrics. PE(8,4,1) has been identified as the clear winner in this particular task, beating down its Deep Ensemble conterpart while accelerating the training time by 25%.
Carpet-bombing patch: attacking a deep network without usual requirements
Labarbarie, Pol, Chan-Hon-Tong, Adrien, Herbin, Stéphane, Leyli-Abadi, Milad
Although deep networks have shown vulnerability to evasion attacks, such attacks have usually unrealistic requirements. Recent literature discussed the possibility to remove or not some of these requirements. This paper contributes to this literature by introducing a carpet-bombing patch attack which has almost no requirement. Targeting the feature representations, this patch attack does not require knowing the network task. This attack decreases accuracy on Imagenet, mAP on Pascal Voc, and IoU on Cityscapes without being aware that the underlying tasks involved classification, detection or semantic segmentation, respectively. Beyond the potential safety issues raised by this attack, the impact of the carpet-bombing attack highlights some interesting property of deep network layer dynamic.
Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust
Chaffre, Thomas, Moras, Julien, Chan-Hon-Tong, Adrien, Marzat, Julien, Sammut, Karl, Chenadec, Gilles Le, Clement, Benoit
Navigation problems under unknown varying conditions are among the most important and well-studied problems in the control field. Classic model-based adaptive control methods can be applied only when a convenient model of the plant or environment is provided. Recent model-free adaptive control methods aim at removing this dependency by learning the physical characteristics of the plant and/or process directly from sensor feedback. Although there have been prior attempts at improving these techniques, it remains an open question as to whether it is possible to cope with real-world uncertainties in a control system that is fully based on either paradigm. We propose a conceptually simple learning-based approach composed of a full state feedback controller, tuned robustly by a deep reinforcement learning framework based on the Soft Actor-Critic algorithm. We compare it, in realistic simulations, to a model-free controller that uses the same deep reinforcement learning framework for the control of a micro aerial vehicle under wind gust. The results indicate the great potential of learning-based adaptive control methods in modern dynamical systems.
SALAD: Self-Assessment Learning for Action Detection
Vaudaux-Ruth, Guillaume, Chan-Hon-Tong, Adrien, Achard, Catherine
Literature on self-assessment in machine learning mainly focuses on the production of well-calibrated algorithms through consensus frameworks i.e. calibration is seen as a problem. Yet, we observe that learning to be properly confident could behave like a powerful regularization and thus, could be an opportunity to improve performance.Precisely, we show that used within a framework of action detection, the learning of a self-assessment score is able to improve the whole action localization process.Experimental results show that our approach outperforms the state-of-the-art on two action detection benchmarks. On THUMOS14 dataset, the mAP at tIoU@0.5 is improved from 42.8\% to 44.6\%, and from 50.4\% to 51.7\% on ActivityNet1.3 dataset. For lower tIoU values, we achieve even more significant improvements on both datasets.