Chan, Chunkit
Persona Knowledge-Aligned Prompt Tuning Method for Online Debate
Chan, Chunkit, Jiayang, Cheng, Liu, Xin, Yim, Yauwai, Jiang, Yuxin, Deng, Zheye, Li, Haoran, Song, Yangqiu, Wong, Ginny Y., See, Simon
Debate is the process of exchanging viewpoints or convincing others on a particular issue. Recent research has provided empirical evidence that the persuasiveness of an argument is determined not only by language usage but also by communicator characteristics. Researchers have paid much attention to aspects of languages, such as linguistic features and discourse structures, but combining argument persuasiveness and impact with the social personae of the audience has not been explored due to the difficulty and complexity. We have observed the impressive simulation and personification capability of ChatGPT, indicating a giant pre-trained language model may function as an individual to provide personae and exert unique influences based on diverse background knowledge. Therefore, we propose a persona knowledge-aligned framework for argument quality assessment tasks from the audience side. This is the first work that leverages the emergence of ChatGPT and injects such audience personae knowledge into smaller language models via prompt tuning. The performance of our pipeline demonstrates significant and consistent improvement compared to competitive architectures.
ECon: On the Detection and Resolution of Evidence Conflicts
Jiayang, Cheng, Chan, Chunkit, Zhuang, Qianqian, Qiu, Lin, Zhang, Tianhang, Liu, Tengxiao, Song, Yangqiu, Zhang, Yue, Liu, Pengfei, Zhang, Zheng
The rise of large language models (LLMs) has significantly influenced the quality of information in decision-making systems, leading to the prevalence of AI-generated content and challenges in detecting misinformation and managing conflicting information, or "inter-evidence conflicts." This study introduces a method for generating diverse, validated evidence conflicts to simulate real-world misinformation scenarios. We evaluate conflict detection methods, including Natural Language Inference (NLI) models, factual consistency (FC) models, and LLMs, on these conflicts (RQ1) and analyze LLMs' conflict resolution behaviors (RQ2). Our key findings include: (1) NLI and LLM models exhibit high precision in detecting answer conflicts, though weaker models suffer from low recall; (2) FC models struggle with lexically similar answer conflicts, while NLI and LLM models handle these better; and (3) stronger models like GPT-4 show robust performance, especially with nuanced conflicts. For conflict resolution, LLMs often favor one piece of conflicting evidence without justification and rely on internal knowledge if they have prior beliefs.
Constrained Reasoning Chains for Enhancing Theory-of-Mind in Large Language Models
Lin, Zizheng, Chan, Chunkit, Song, Yangqiu, Liu, Xin
Theory-of-Mind (ToM) ability possessed by Large Language Models (LLMs) has been shown to be limited. Most existing methods for improving ToM in LLMs adopt zero-shot prompting, and they face challenges including poor performance in complex ToM reasoning tasks and an inability to handle non-narrative contexts. We propose a zero-shot prompting method named Constrained Chain-of-ToM (CCoToM) that leverages domain knowledge and the causal relations between ToM dimensions to address these limitations. Specifically, CCoToM guides LLMs to construct explicit reasoning chains by first prompting LLMs to infer related ToM dimensions (e.g., belief). Afterward, CCoToM prompts LLMs to infer the queried ToM dimension based on the generated related ToM dimensions and corresponding causal relations. Additionally, CCoToM adaptively imposes constraints on prompts to introduce inductive biases and improve consistency between ToM dimensions. Besides narratives, CCoToM can also handle non-narrative contexts like conversations. Extensive experiments show that CCoToM consistently outperforms previous state-of-the-art methods by large margins across all LLMs and datasets used. We also conduct in-depth analyses to gain deeper insights into CCoToM. We have made our code publicly available.
EventGround: Narrative Reasoning by Grounding to Eventuality-centric Knowledge Graphs
Jiayang, Cheng, Qiu, Lin, Chan, Chunkit, Liu, Xin, Song, Yangqiu, Zhang, Zheng
Narrative reasoning relies on the understanding of eventualities in story contexts, which requires a wealth of background world knowledge. To help machines leverage such knowledge, existing solutions can be categorized into two groups. Some focus on implicitly modeling eventuality knowledge by pretraining language models (LMs) with eventuality-aware objectives. However, this approach breaks down knowledge structures and lacks interpretability. Others explicitly collect world knowledge of eventualities into structured eventuality-centric knowledge graphs (KGs). However, existing research on leveraging these knowledge sources for free-texts is limited. In this work, we propose an initial comprehensive framework called EventGround, which aims to tackle the problem of grounding free-texts to eventuality-centric KGs for contextualized narrative reasoning. We identify two critical problems in this direction: the event representation and sparsity problems. We provide simple yet effective parsing and partial information extraction methods to tackle these problems. Experimental results demonstrate that our approach consistently outperforms baseline models when combined with graph neural network (GNN) or large language model (LLM) based graph reasoning models. Our framework, incorporating grounded knowledge, achieves state-of-the-art performance while providing interpretable evidence.
Backdoor Removal for Generative Large Language Models
Li, Haoran, Chen, Yulin, Zheng, Zihao, Hu, Qi, Chan, Chunkit, Liu, Heshan, Song, Yangqiu
With rapid advances, generative large language models (LLMs) dominate various Natural Language Processing (NLP) tasks from understanding to reasoning. Yet, language models' inherent vulnerabilities may be exacerbated due to increased accessibility and unrestricted model training on massive textual data from the Internet. A malicious adversary may publish poisoned data online and conduct backdoor attacks on the victim LLMs pre-trained on the poisoned data. Backdoored LLMs behave innocuously for normal queries and generate harmful responses when the backdoor trigger is activated. Despite significant efforts paid to LLMs' safety issues, LLMs are still struggling against backdoor attacks. As Anthropic recently revealed, existing safety training strategies, including supervised fine-tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), fail to revoke the backdoors once the LLM is backdoored during the pre-training stage. In this paper, we present Simulate and Eliminate (SANDE) to erase the undesired backdoored mappings for generative LLMs. We initially propose Overwrite Supervised Fine-tuning (OSFT) for effective backdoor removal when the trigger is known. Then, to handle the scenarios where the trigger patterns are unknown, we integrate OSFT into our two-stage framework, SANDE. Unlike previous works that center on the identification of backdoors, our safety-enhanced LLMs are able to behave normally even when the exact triggers are activated. We conduct comprehensive experiments to show that our proposed SANDE is effective against backdoor attacks while bringing minimal harm to LLMs' powerful capability without any additional access to unbackdoored clean models. We will release the reproducible code.
Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction
Deng, Zheye, Chan, Chunkit, Wang, Weiqi, Sun, Yuxi, Fan, Wei, Zheng, Tianshi, Yim, Yauwai, Song, Yangqiu
The task of condensing large chunks of textual information into concise and structured tables has gained attention recently due to the emergence of Large Language Models (LLMs) and their potential benefit for downstream tasks, such as text summarization and text mining. Previous approaches often generate tables that directly replicate information from the text, limiting their applicability in broader contexts, as text-to-table generation in real-life scenarios necessitates information extraction, reasoning, and integration. However, there is a lack of both datasets and methodologies towards this task. In this paper, we introduce LiveSum, a new benchmark dataset created for generating summary tables of competitions based on real-time commentary texts. We evaluate the performances of state-of-the-art LLMs on this task in both fine-tuning and zero-shot settings, and additionally propose a novel pipeline called $T^3$(Text-Tuple-Table) to improve their performances. Extensive experimental results demonstrate that LLMs still struggle with this task even after fine-tuning, while our approach can offer substantial performance gains without explicit training. Further analyses demonstrate that our method exhibits strong generalization abilities, surpassing previous approaches on several other text-to-table datasets. Our code and data can be found at https://github.com/HKUST-KnowComp/LiveSum-TTT.
CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning
Wang, Weiqi, Fang, Tianqing, Li, Chunyang, Shi, Haochen, Ding, Wenxuan, Xu, Baixuan, Wang, Zhaowei, Bai, Jiaxin, Liu, Xin, Cheng, Jiayang, Chan, Chunkit, Song, Yangqiu
The sequential process of conceptualization and instantiation is essential to generalizable commonsense reasoning as it allows the application of existing knowledge to unfamiliar scenarios. However, existing works tend to undervalue the step of instantiation and heavily rely on pre-built concept taxonomies and human annotations to collect both types of knowledge, resulting in a lack of instantiated knowledge to complete reasoning, high cost, and limited scalability. To tackle these challenges, we introduce CANDLE, a distillation framework that iteratively performs contextualized conceptualization and instantiation over commonsense knowledge bases by instructing large language models to generate both types of knowledge with critic filtering. By applying CANDLE to ATOMIC, we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples. Both types of knowledge are firmly rooted in the original ATOMIC dataset, and intrinsic evaluations demonstrate their exceptional quality and diversity. Empirical results indicate that distilling CANDLE on student models provides benefits across four downstream tasks. Our code, data, and models are publicly available at https://github.com/HKUST-KnowComp/CANDLE.
P-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models
Li, Haoran, Guo, Dadi, Li, Donghao, Fan, Wei, Hu, Qi, Liu, Xin, Chan, Chunkit, Yao, Duanyi, Song, Yangqiu
The rapid development of language models (LMs) brings unprecedented accessibility and usage for both models and users. On the one hand, powerful LMs, trained with massive textual data, achieve state-of-the-art performance over numerous downstream NLP tasks. On the other hand, more and more attention is paid to unrestricted model accesses that may bring malicious privacy risks of data leakage. To address these issues, many recent works propose privacy-preserving language models (PPLMs) with differential privacy (DP). Unfortunately, different DP implementations make it challenging for a fair comparison among existing PPLMs. In this paper, we present P-Bench, a multi-perspective privacy evaluation benchmark to empirically and intuitively quantify the privacy leakage of LMs. Instead of only protecting and measuring the privacy of protected data with DP parameters, P-Bench sheds light on the neglected inference data privacy during actual usage. P-Bench first clearly defines multi-faceted privacy objectives during private fine-tuning. Then, P-Bench constructs a unified pipeline to perform private fine-tuning. Lastly, P-Bench performs existing privacy attacks on LMs with pre-defined privacy objectives as the empirical evaluation results. The empirical attack results are used to fairly and intuitively evaluate the privacy leakage of various PPLMs. We conduct extensive experiments on three datasets of GLUE for mainstream LMs.
StoryAnalogy: Deriving Story-level Analogies from Large Language Models to Unlock Analogical Understanding
Jiayang, Cheng, Qiu, Lin, Chan, Tsz Ho, Fang, Tianqing, Wang, Weiqi, Chan, Chunkit, Ru, Dongyu, Guo, Qipeng, Zhang, Hongming, Song, Yangqiu, Zhang, Yue, Zhang, Zheng
Analogy-making between narratives is crucial for human reasoning. In this paper, we evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus, \textsc{StoryAnalogy}, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on \textsc{StoryAnalogy}, presenting the first evaluation of story-level analogy identification and generation. Interestingly, we find that the analogy identification tasks are incredibly difficult not only for sentence embedding models but also for the recent large language models (LLMs) such as ChatGPT and LLaMa. ChatGPT, for example, only achieved around 30% accuracy in multiple-choice questions (compared to over 85% accuracy for humans). Furthermore, we observe that the data in \textsc{StoryAnalogy} can improve the quality of analogy generation in LLMs, where a fine-tuned FlanT5-xxl model achieves comparable performance to zero-shot ChatGPT.
Privacy in Large Language Models: Attacks, Defenses and Future Directions
Li, Haoran, Chen, Yulin, Luo, Jinglong, Kang, Yan, Zhang, Xiaojin, Hu, Qi, Chan, Chunkit, Song, Yangqiu
The advancement of large language models (LLMs) has significantly enhanced the ability to effectively tackle various downstream NLP tasks and unify these tasks into generative pipelines. On the one hand, powerful language models, trained on massive textual data, have brought unparalleled accessibility and usability for both models and users. On the other hand, unrestricted access to these models can also introduce potential malicious and unintentional privacy risks. Despite ongoing efforts to address the safety and privacy concerns associated with LLMs, the problem remains unresolved. In this paper, we provide a comprehensive analysis of the current privacy attacks targeting LLMs and categorize them according to the adversary's assumed capabilities to shed light on the potential vulnerabilities present in LLMs. Then, we present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks. Beyond existing works, we identify upcoming privacy concerns as LLMs evolve. Lastly, we point out several potential avenues for future exploration.