Chakravarthi, Bharatesh
KAT to KANs: A Review of Kolmogorov-Arnold Networks and the Neural Leap Forward
Basina, Divesh, Vishal, Joseph Raj, Choudhary, Aarya, Chakravarthi, Bharatesh
The curse of dimensionality poses a significant challenge to modern multilayer perceptron-based architectures, often causing performance stagnation and scalability issues. Addressing this limitation typically requires vast amounts of data. In contrast, Kolmogorov-Arnold Networks have gained attention in the machine learning community for their bold claim of being unaffected by the curse of dimensionality. This paper explores the Kolmogorov-Arnold representation theorem and the mathematical principles underlying Kolmogorov-Arnold Networks, which enable their scalability and high performance in high-dimensional spaces. We begin with an introduction to foundational concepts necessary to understand Kolmogorov-Arnold Networks, including interpolation methods and Basis-splines, which form their mathematical backbone. This is followed by an overview of perceptron architectures and the Universal approximation theorem, a key principle guiding modern machine learning. This is followed by an overview of the Kolmogorov-Arnold representation theorem, including its mathematical formulation and implications for overcoming dimensionality challenges. Next, we review the architecture and error-scaling properties of Kolmogorov-Arnold Networks, demonstrating how these networks achieve true freedom from the curse of dimensionality. Finally, we discuss the practical viability of Kolmogorov-Arnold Networks, highlighting scenarios where their unique capabilities position them to excel in real-world applications. This review aims to offer insights into Kolmogorov-Arnold Networks' potential to redefine scalability and performance in high-dimensional learning tasks.
SEVD: Synthetic Event-based Vision Dataset for Ego and Fixed Traffic Perception
Aliminati, Manideep Reddy, Chakravarthi, Bharatesh, Verma, Aayush Atul, Vaghela, Arpitsinh, Wei, Hua, Zhou, Xuesong, Yang, Yezhou
Recently, event-based vision sensors have gained attention for autonomous driving applications, as conventional RGB cameras face limitations in handling challenging dynamic conditions. However, the availability of real-world and synthetic event-based vision datasets remains limited. In response to this gap, we present SEVD, a first-of-its-kind multi-view ego, and fixed perception synthetic event-based dataset using multiple dynamic vision sensors within the CARLA simulator. Data sequences are recorded across diverse lighting (noon, nighttime, twilight) and weather conditions (clear, cloudy, wet, rainy, foggy) with domain shifts (discrete and continuous). SEVD spans urban, suburban, rural, and highway scenes featuring various classes of objects (car, truck, van, bicycle, motorcycle, and pedestrian). Alongside event data, SEVD includes RGB imagery, depth maps, optical flow, semantic, and instance segmentation, facilitating a comprehensive understanding of the scene. Furthermore, we evaluate the dataset using state-of-the-art event-based (RED, RVT) and frame-based (YOLOv8) methods for traffic participant detection tasks and provide baseline benchmarks for assessment. Additionally, we conduct experiments to assess the synthetic event-based dataset's generalization capabilities. The dataset is available at https://eventbasedvision.github.io/SEVD