Goto

Collaborating Authors

 Chakraborty, Tanmoy


Manifold-Preserving Transformers are Effective for Short-Long Range Encoding

arXiv.org Artificial Intelligence

Multi-head self-attention-based Transformers have shown promise in different learning tasks. Albeit these models exhibit significant improvement in understanding short-term and long-term contexts from sequences, encoders of Transformers and their variants fail to preserve layer-wise contextual information. Transformers usually project tokens onto sparse manifolds and fail to preserve mathematical equivalence among the token representations. In this work, we propose TransJect, an encoder model that guarantees a theoretical bound for layer-wise distance preservation between a pair of tokens. We propose a simple alternative to dot-product attention to ensure Lipschitz continuity. This allows TransJect to learn injective mappings to transform token representations to different manifolds with similar topology and preserve Euclidean distance between every pair of tokens in subsequent layers. Evaluations across multiple benchmark short- and long-sequence classification tasks show maximum improvements of 6.8% and 5.9%, respectively, over the variants of Transformers. Additionally, TransJect displays 79% better performance than Transformer on the language modeling task. We further highlight the shortcomings of multi-head self-attention from the statistical physics viewpoint. Although multi-head self-attention was incepted to learn different abstraction levels within the networks, our empirical analyses suggest that different attention heads learn randomly and unorderly. In contrast, TransJect adapts a mixture of experts for regularization; these experts are more orderly and balanced and learn different sparse representations from the input sequences. TransJect exhibits very low entropy and can be efficiently scaled to larger depths.


Small Language Models Fine-tuned to Coordinate Larger Language Models improve Complex Reasoning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) prompted to generate chain-of-thought (CoT) exhibit impressive reasoning capabilities. Recent attempts at prompt decomposition toward solving complex, multi-step reasoning problems depend on the ability of the LLM to simultaneously decompose and solve the problem. A significant disadvantage is that foundational LLMs are typically not available for fine-tuning, making adaptation computationally prohibitive. We believe (and demonstrate) that problem decomposition and solution generation are distinct capabilites, better addressed in separate modules, than by one monolithic LLM. We introduce DaSLaM, which uses a decomposition generator to decompose complex problems into subproblems that require fewer reasoning steps. These subproblems are answered by a solver. We use a relatively small (13B parameters) LM as the decomposition generator, which we train using policy gradient optimization to interact with a solver LM (regarded as black-box) and guide it through subproblems, thereby rendering our method solver-agnostic. Evaluation on multiple different reasoning datasets reveal that with our method, a 175 billion parameter LM (text-davinci-003) can produce competitive or even better performance, compared to its orders-of-magnitude larger successor, GPT-4. Additionally, we show that DaSLaM is not limited by the solver's capabilities as a function of scale; e.g., solver LMs with diverse sizes give significant performance improvement with our solver-agnostic decomposition technique. Exhaustive ablation studies evince the superiority of our modular finetuning technique over exorbitantly large decomposer LLMs, based on prompting alone.


From Multilingual Complexity to Emotional Clarity: Leveraging Commonsense to Unveil Emotions in Code-Mixed Dialogues

arXiv.org Artificial Intelligence

Understanding emotions during conversation is a fundamental aspect of human communication, driving NLP research for Emotion Recognition in Conversation (ERC). While considerable research has focused on discerning emotions of individual speakers in monolingual dialogues, understanding the emotional dynamics in code-mixed conversations has received relatively less attention. This motivates our undertaking of ERC for code-mixed conversations in this study. Recognizing that emotional intelligence encompasses a comprehension of worldly knowledge, we propose an innovative approach that integrates commonsense information with dialogue context to facilitate a deeper understanding of emotions. To achieve this, we devise an efficient pipeline that extracts relevant commonsense from existing knowledge graphs based on the code-mixed input. Subsequently, we develop an advanced fusion technique that seamlessly combines the acquired commonsense information with the dialogue representation obtained from a dedicated dialogue understanding module. Our comprehensive experimentation showcases the substantial performance improvement obtained through the systematic incorporation of commonsense in ERC. Both quantitative assessments and qualitative analyses further corroborate the validity of our hypothesis, reaffirming the pivotal role of commonsense integration in enhancing ERC.


Factuality Challenges in the Era of Large Language Models

arXiv.org Artificial Intelligence

The emergence of tools based on Large Language Models (LLMs), such as OpenAI's ChatGPT, Microsoft's Bing Chat, and Google's Bard, has garnered immense public attention. These incredibly useful, natural-sounding tools mark significant advances in natural language generation, yet they exhibit a propensity to generate false, erroneous, or misleading content -- commonly referred to as "hallucinations." Moreover, LLMs can be exploited for malicious applications, such as generating false but credible-sounding content and profiles at scale. This poses a significant challenge to society in terms of the potential deception of users and the increasing dissemination of inaccurate information. In light of these risks, we explore the kinds of technological innovations, regulatory reforms, and AI literacy initiatives needed from fact-checkers, news organizations, and the broader research and policy communities. By identifying the risks, the imminent threats, and some viable solutions, we seek to shed light on navigating various aspects of veracity in the era of generative AI.


Focal Inferential Infusion Coupled with Tractable Density Discrimination for Implicit Hate Speech Detection

arXiv.org Artificial Intelligence

Although pre-trained large language models (PLMs) have achieved state-of-the-art on many NLP tasks, they lack understanding of subtle expressions of implicit hate speech. Such nuanced and implicit hate is often misclassified as non-hate. Various attempts have been made to enhance the detection of (implicit) hate content by augmenting external context or enforcing label separation via distance-based metrics. We combine these two approaches and introduce FiADD, a novel Focused Inferential Adaptive Density Discrimination framework. FiADD enhances the PLM finetuning pipeline by bringing the surface form of an implicit hate speech closer to its implied form while increasing the inter-cluster distance among various class labels. We test FiADD on three implicit hate datasets and observe significant improvement in the two-way and three-way hate classification tasks. We further experiment on the generalizability of FiADD on three other tasks, namely detecting sarcasm, irony, and stance, in which surface and implied forms differ, and observe similar performance improvement. We analyze the generated latent space to understand its evolution under FiADD, which corroborates the advantage of employing FiADD for implicit hate speech detection.


Leveraging Social Discourse to Measure Check-worthiness of Claims for Fact-checking

arXiv.org Artificial Intelligence

The expansion of online social media platforms has led to a surge in online content consumption. However, this has also paved the way for disseminating false claims and misinformation. As a result, there is an escalating demand for a substantial workforce to sift through and validate such unverified claims. Currently, these claims are manually verified by fact-checkers. Still, the volume of online content often outweighs their potency, making it difficult for them to validate every single claim in a timely manner. Thus, it is critical to determine which assertions are worth fact-checking and prioritize claims that require immediate attention. Multiple factors contribute to determining whether a claim necessitates fact-checking, encompassing factors such as its factual correctness, potential impact on the public, the probability of inciting hatred, and more. Despite several efforts to address claim check-worthiness, a systematic approach to identify these factors remains an open challenge. To this end, we introduce a new task of fine-grained claim check-worthiness, which underpins all of these factors and provides probable human grounds for identifying a claim as check-worthy. We present CheckIt, a manually annotated large Twitter dataset for fine-grained claim check-worthiness. We benchmark our dataset against a unified approach, CheckMate, that jointly determines whether a claim is check-worthy and the factors that led to that conclusion. We compare our suggested system with several baseline systems. Finally, we report a thorough analysis of results and human assessment, validating the efficacy of integrating check-worthiness factors in detecting claims worth fact-checking.


Node Injection for Class-specific Network Poisoning

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are powerful in learning rich network representations that aid the performance of downstream tasks. However, recent studies showed that GNNs are vulnerable to adversarial attacks involving node injection and network perturbation. Among these, node injection attacks are more practical as they don't require manipulation in the existing network and can be performed more realistically. In this paper, we propose a novel problem statement - a class-specific poison attack on graphs in which the attacker aims to misclassify specific nodes in the target class into a different class using node injection. Additionally, nodes are injected in such a way that they camouflage as benign nodes. We propose NICKI, a novel attacking strategy that utilizes an optimization-based approach to sabotage the performance of GNN-based node classifiers. NICKI works in two phases - it first learns the node representation and then generates the features and edges of the injected nodes. Extensive experiments and ablation studies on four benchmark networks show that NICKI is consistently better than four baseline attacking strategies for misclassifying nodes in the target class. We also show that the injected nodes are properly camouflaged as benign, thus making the poisoned graph indistinguishable from its clean version w.r.t various topological properties.


Persona-aware Generative Model for Code-mixed Language

arXiv.org Artificial Intelligence

Code-mixing and script-mixing are prevalent across online social networks and multilingual societies. However, a user's preference toward code-mixing depends on the socioeconomic status, demographics of the user, and the local context, which existing generative models mostly ignore while generating code-mixed texts. In this work, we make a pioneering attempt to develop a persona-aware generative model to generate texts resembling real-life code-mixed texts of individuals. We propose a Persona-aware Generative Model for Code-mixed Generation, PARADOX, a novel Transformer-based encoder-decoder model that encodes an utterance conditioned on a user's persona and generates code-mixed texts without monolingual reference data. We propose an alignment module that re-calibrates the generated sequence to resemble real-life code-mixed texts. PARADOX generates code-mixed texts that are semantically more meaningful and linguistically more valid. To evaluate the personification capabilities of PARADOX, we propose four new metrics -- CM BLEU, CM Rouge-1, CM Rouge-L and CM KS. On average, PARADOX achieves 1.6 points better CM BLEU, 47% better perplexity and 32% better semantic coherence than the non-persona-based counterparts.


Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems

arXiv.org Artificial Intelligence

Sharing ideas through communication with peers is the primary mode of human interaction. Consequently, extensive research has been conducted in the area of conversational AI, leading to an increase in the availability and diversity of conversational tasks, datasets, and methods. However, with numerous tasks being explored simultaneously, the current landscape of conversational AI becomes fragmented. Therefore, initiating a well-thought-out model for a dialogue agent can pose significant challenges for a practitioner. Towards highlighting the critical ingredients needed for a practitioner to design a dialogue agent from scratch, the current study provides a comprehensive overview of the primary characteristics of a dialogue agent, the supporting tasks, their corresponding open-domain datasets, and the methods used to benchmark these datasets. We observe that different methods have been used to tackle distinct dialogue tasks. However, building separate models for each task is costly and does not leverage the correlation among the several tasks of a dialogue agent. As a result, recent trends suggest a shift towards building unified foundation models. To this end, we propose UNIT, a UNified dIalogue dataseT constructed from conversations of existing datasets for different dialogue tasks capturing the nuances for each of them. We also examine the evaluation strategies used to measure the performance of dialogue agents and highlight the scope for future research in the area of conversational AI.


Emotion Flip Reasoning in Multiparty Conversations

arXiv.org Artificial Intelligence

In a conversational dialogue, speakers may have different emotional states and their dynamics play an important role in understanding dialogue's emotional discourse. However, simply detecting emotions is not sufficient to entirely comprehend the speaker-specific changes in emotion that occur during a conversation. To understand the emotional dynamics of speakers in an efficient manner, it is imperative to identify the rationale or instigator behind any changes or flips in emotion expressed by the speaker. In this paper, we explore the task called Instigator based Emotion Flip Reasoning (EFR), which aims to identify the instigator behind a speaker's emotion flip within a conversation. For example, an emotion flip from joy to anger could be caused by an instigator like threat. To facilitate this task, we present MELD-I, a dataset that includes ground-truth EFR instigator labels, which are in line with emotional psychology. To evaluate the dataset, we propose a novel neural architecture called TGIF, which leverages Transformer encoders and stacked GRUs to capture the dialogue context, speaker dynamics, and emotion sequence in a conversation. Our evaluation demonstrates state-of-the-art performance (+4-12% increase in F1-score) against five baselines used for the task. Further, we establish the generalizability of TGIF on an unseen dataset in a zero-shot setting. Additionally, we provide a detailed analysis of the competing models, highlighting the advantages and limitations of our neural architecture.