Chakraborty, Satyaki
GraphTransformers for Geospatial Forecasting of Hurricane Trajectories
Banerjee, Pallavi, Chakraborty, Satyaki
In this paper we introduce a novel framework for trajectory prediction of geospatial sequences using GraphTransformers. When viewed across several sequences, we observed that a graph structure automatically emerges between different geospatial points that is often not taken into account for such sequence modeling tasks. We show that by leveraging this graph structure explicitly, geospatial trajectory prediction can be significantly improved. Our GraphTransformer approach improves upon state-of-the-art Transformer based baseline significantly on HURDAT, a dataset where we are interested in predicting the trajectory of a hurricane on a 6 hourly basis. This helps inform evacuation efforts by narrowing down target location by 10 to 20 kilometers along both the north-south and east-west directions.
Learning to Track Object Position through Occlusion
Chakraborty, Satyaki, Hebert, Martial
Occlusion is one of the most significant challenges encountered by object detectors and trackers. While both object detection and tracking has received a lot of attention in the past, most existing methods in this domain do not target detecting or tracking objects when they are occluded. However, being able to detect or track an object of interest through occlusion has been a long standing challenge for different autonomous tasks. Traditional methods that employ visual object trackers with explicit occlusion modeling experience drift and make several fundamental assumptions about the data. We propose to address this with a `tracking-by-detection` approach that builds upon the success of region based video object detectors. Our video level object detector uses a novel recurrent computational unit at its core that enables long term propagation of object features even under occlusion. Finally, we compare our approach with existing state-of-the-art video object detectors and show that our approach achieves superior results on a dataset of furniture assembly videos collected from the internet, where small objects like screws, nuts, and bolts often get occluded from the camera viewpoint.