Chakraborty, Rudrasis
Variational Sampling of Temporal Trajectories
Nazarovs, Jurijs, Huang, Zhichun, Zhen, Xingjian, Pal, Sourav, Chakraborty, Rudrasis, Singh, Vikas
A deterministic temporal process can be determined by its trajectory, an element in the product space of (a) initial condition $z_0 \in \mathcal{Z}$ and (b) transition function $f: (\mathcal{Z}, \mathcal{T}) \to \mathcal{Z}$ often influenced by the control of the underlying dynamical system. Existing methods often model the transition function as a differential equation or as a recurrent neural network. Despite their effectiveness in predicting future measurements, few results have successfully established a method for sampling and statistical inference of trajectories using neural networks, partially due to constraints in the parameterization. In this work, we introduce a mechanism to learn the distribution of trajectories by parameterizing the transition function $f$ explicitly as an element in a function space. Our framework allows efficient synthesis of novel trajectories, while also directly providing a convenient tool for inference, i.e., uncertainty estimation, likelihood evaluations and out of distribution detection for abnormal trajectories. These capabilities can have implications for various downstream tasks, e.g., simulation and evaluation for reinforcement learning.
Forward Operator Estimation in Generative Models with Kernel Transfer Operators
Huang, Zhichun, Chakraborty, Rudrasis, Singh, Vikas
Generative models which use explicit density modeling (e.g., variational autoencoders, flow-based generative models) involve finding a mapping from a known distribution, e.g. Gaussian, to the unknown input distribution. This often requires searching over a class of non-linear functions (e.g., representable by a deep neural network). While effective in practice, the associated runtime/memory costs can increase rapidly, usually as a function of the performance desired in an application. We propose a much cheaper (and simpler) strategy to estimate this mapping based on adapting known results in kernel transfer operators. We show that our formulation enables highly efficient distribution approximation and sampling, and offers surprisingly good empirical performance that compares favorably with powerful baselines, but with significant runtime savings. We show that the algorithm also performs well in small sample size settings (in brain imaging).
An Online Riemannian PCA for Stochastic Canonical Correlation Analysis
Meng, Zihang, Chakraborty, Rudrasis, Singh, Vikas
We present an efficient stochastic algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices. We show how this reparametrization (into structured matrices), simple in hindsight, directly presents an opportunity to repurpose/adjust mature techniques for numerical optimization on Riemannian manifolds. Our developments nicely complement existing methods for this problem which either require $O(d^3)$ time complexity per iteration with $O(\frac{1}{\sqrt{t}})$ convergence rate (where $d$ is the dimensionality) or only extract the top $1$ component with $O(\frac{1}{t})$ convergence rate. In contrast, our algorithm offers a strict improvement for this classical problem: it achieves $O(d^2k)$ runtime complexity per iteration for extracting the top $k$ canonical components with $O(\frac{1}{t})$ convergence rate. While the paper primarily focuses on the formulation and technical analysis of its properties, our experiments show that the empirical behavior on common datasets is quite promising. We also explore a potential application in training fair models where the label of protected attribute is missing or otherwise unavailable.
Simpler Certified Radius Maximization by Propagating Covariances
Zhen, Xingjian, Chakraborty, Rudrasis, Singh, Vikas
One strategy for adversarially training a robust model is to maximize its certified radius -- the neighborhood around a given training sample for which the model's prediction remains unchanged. The scheme typically involves analyzing a "smoothed" classifier where one estimates the prediction corresponding to Gaussian samples in the neighborhood of each sample in the mini-batch, accomplished in practice by Monte Carlo sampling. In this paper, we investigate the hypothesis that this sampling bottleneck can potentially be mitigated by identifying ways to directly propagate the covariance matrix of the smoothed distribution through the network. To this end, we find that other than certain adjustments to the network, propagating the covariances must also be accompanied by additional accounting that keeps track of how the distributional moments transform and interact at each stage in the network. We show how satisfying these criteria yields an algorithm for maximizing the certified radius on datasets including Cifar-10, ImageNet, and Places365 while offering runtime savings on networks with moderate depth, with a small compromise in overall accuracy. We describe the details of the key modifications that enable practical use. Via various experiments, we evaluate when our simplifications are sensible, and what the key benefits and limitations are.
C-SURE: Shrinkage Estimator and Prototype Classifier for Complex-Valued Deep Learning
Xing, Yifei, Chakraborty, Rudrasis, Duan, Minxuan, Yu, Stella
The James-Stein (JS) shrinkage estimator is a biased estimator that captures the mean of Gaussian random vectors.While it has a desirable statistical property of dominance over the maximum likelihood estimator (MLE) in terms of mean squared error (MSE), not much progress has been made on extending the estimator onto manifold-valued data. We propose C-SURE, a novel Stein's unbiased risk estimate (SURE) of the JS estimator on the manifold of complex-valued data with a theoretically proven optimum over MLE. Adapting the architecture of the complex-valued SurReal classifier, we further incorporate C-SURE into a prototype convolutional neural network (CNN) classifier. We compare C-SURE with SurReal and a real-valued baseline on complex-valued MSTAR and RadioML datasets. C-SURE is more accurate and robust than SurReal, and the shrinkage estimator is always better than MLE for the same prototype classifier. Like SurReal, C-SURE is much smaller, outperforming the real-valued baseline on MSTAR (RadioML) with less than 1 percent (3 percent) of the baseline size
A Statistical Recurrent Model on the Manifold of Symmetric Positive Definite Matrices
Chakraborty, Rudrasis, Yang, Chun-Hao, Zhen, Xingjian, Banerjee, Monami, Archer, Derek, Vaillancourt, David, Singh, Vikas, Vemuri, Baba
In a number of disciplines, the data (e.g., graphs, manifolds) to be analyzed are non-Euclidean in nature. Geometric deep learning corresponds to techniques that generalize deep neural network models to such non-Euclidean spaces. Several recent papers have shown how convolutional neural networks (CNNs) can be extended to learn with graph-based data. In this work, we study the setting where the data (or measurements) are ordered, longitudinal or temporal in nature and live on a Riemannian manifold -- this setting is common in a variety of problems in statistical machine learning, vision and medical imaging. We show how recurrent statistical recurrent network models can be defined in such spaces.
A Statistical Recurrent Model on the Manifold of Symmetric Positive Definite Matrices
Chakraborty, Rudrasis, Yang, Chun-Hao, Zhen, Xingjian, Banerjee, Monami, Archer, Derek, Vaillancourt, David, Singh, Vikas, Vemuri, Baba
In a number of disciplines, the data (e.g., graphs, manifolds) to be analyzed are non-Euclidean in nature. Geometric deep learning corresponds to techniques that generalize deep neural network models to such non-Euclidean spaces. Several recent papers have shown how convolutional neural networks (CNNs) can be extended to learn with graph-based data. In this work, we study the setting where the data (or measurements) are ordered, longitudinal or temporal in nature and live on a Riemannian manifold -- this setting is common in a variety of problems in statistical machine learning, vision and medical imaging. We show how recurrent statistical recurrent network models can be defined in such spaces. We give an efficient algorithm and conduct a rigorous analysis of its statistical properties. We perform extensive numerical experiments demonstrating competitive performance with state of the art methods but with significantly less number of parameters. We also show applications to a statistical analysis task in brain imaging, a regime where deep neural network models have only been utilized in limited ways.
A Statistical Recurrent Model on the Manifold of Symmetric Positive Definite Matrices
Chakraborty, Rudrasis, Yang, Chun-Hao, Zhen, Xingjian, Banerjee, Monami, Archer, Derek, Vaillancourt, David, Singh, Vikas, Vemuri, Baba
In a number of disciplines, the data (e.g., graphs, manifolds) to be analyzed are non-Euclidean in nature. Geometric deep learning corresponds to techniques that generalize deep neural network models to such non-Euclidean spaces. Several recent papers have shown how convolutional neural networks (CNNs) can be extended to learn with graph-based data. In this work, we study the setting where the data (or measurements) are ordered, longitudinal or temporal in nature and live on a Riemannian manifold -- this setting is common in a variety of problems in statistical machine learning, vision and medical imaging. We show how recurrent statistical recurrent network models can be defined in such spaces. We give an efficient algorithm and conduct a rigorous analysis of its statistical properties. We perform extensive numerical experiments demonstrating competitive performance with state of the art methods but with significantly less number of parameters. We also show applications to a statistical analysis task in brain imaging, a regime where deep neural network models have only been utilized in limited ways.
A mixture model for aggregation of multiple pre-trained weak classifiers
Chakraborty, Rudrasis, Yang, Chun-Hao, Vemuri, Baba C.
Deep networks have gained immense popularity in Computer Vision and other fields in the past few years due to their remarkable performance on recognition/classification tasks surpassing the state-of-the art. One of the keys to their success lies in the richness of the automatically learned features. In order to get very good accuracy, one popular option is to increase the depth of the network. Training such a deep network is however infeasible or impractical with moderate computational resources and budget. The other alternative to increase the performance is to learn multiple weak classifiers and boost their performance using a boosting algorithm or a variant thereof. But, one of the problems with boosting algorithms is that they require a re-training of the networks based on the misclassified samples. Motivated by these problems, in this work we propose an aggregation technique which combines the output of multiple weak classifiers. We formulate the aggregation problem using a mixture model fitted to the trained classifier outputs. Our model does not require any re-training of the `weak' networks and is computationally very fast (takes $<30$ seconds to run in our experiments). Thus, using a less expensive training stage and without doing any re-training of networks, we experimentally demonstrate that it is possible to boost the performance by $12\%$. Furthermore, we present experiments using hand-crafted features and improved the classification performance using the proposed aggregation technique. One of the major advantages of our framework is that our framework allows one to combine features that are very likely to be of distinct dimensions since they are extracted using different networks/algorithms. Our experimental results demonstrate a significant performance gain from the use of our aggregation technique at a very small computational cost.
Statistical Recurrent Models on Manifold valued Data
Chakraborty, Rudrasis, Yang, Chun-Hao, Zhen, Xingjian, Banerjee, Monami, Archer, Derek, Vaillancourt, David, Singh, Vikas, Vemuri, Baba C.
In a number of disciplines, the data (e.g., graphs, manifolds) to be analyzed are non-Euclidean in nature. Geometric deep learning corresponds to techniques that generalize deep neural network models to such non-Euclidean spaces. Several recent papers have shown how convolutional neural networks (CNNs) can be extended to learn with graph-based data. In this work, we study the setting where the data (or measurements) are ordered, longitudinal or temporal in nature and live on a Riemannian manifold -- this setting is common in a variety of problems in statistical machine learning, vision and medical imaging. We show how statistical recurrent network models can be defined in such spaces. We give an efficient algorithm and conduct a rigorous analysis of its statistical properties. We perform extensive numerical experiments showing competitive performance with state of the art methods but with far fewer parameters. We also show applications to a statistical analysis task in brain imaging, a regime where deep neural network models have only been utilized in limited ways.