Chakrabarty, Anish
On Robust Cross Domain Alignment
Chakrabarty, Anish, Basu, Arkaprabha, Das, Swagatam
The Gromov-Wasserstein (GW) distance is an effective measure of alignment between distributions supported on distinct ambient spaces. Calculating essentially the mutual departure from isometry, it has found vast usage in domain translation and network analysis. It has long been shown to be vulnerable to contamination in the underlying measures. All efforts to introduce robustness in GW have been inspired by similar techniques in optimal transport (OT), which predominantly advocate partial mass transport or unbalancing. In contrast, the cross-domain alignment problem being fundamentally different from OT, demands specific solutions to tackle diverse applications and contamination regimes. Deriving from robust statistics, we discuss three contextually novel techniques to robustify GW and its variants. For each method, we explore metric properties and robustness guarantees along with their co-dependencies and individual relations with the GW distance.
Fortifying Fully Convolutional Generative Adversarial Networks for Image Super-Resolution Using Divergence Measures
Basu, Arkaprabha, Bose, Kushal, Mullick, Sankha Subhra, Chakrabarty, Anish, Das, Swagatam
Super-Resolution (SR) is a time-hallowed image processing problem that aims to improve the quality of a Low-Resolution (LR) sample up to the standard of its High-Resolution (HR) counterpart. We aim to address this by introducing Super-Resolution Generator (SuRGe), a fully-convolutional Generative Adversarial Network (GAN)-based architecture for SR. We show that distinct convolutional features obtained at increasing depths of a GAN generator can be optimally combined by a set of learnable convex weights to improve the quality of generated SR samples. In the process, we employ the Jensen-Shannon and the Gromov-Wasserstein losses respectively between the SR-HR and LR-SR pairs of distributions to further aid the generator of SuRGe to better exploit the available information in an attempt to improve SR. Moreover, we train the discriminator of SuRGe with the Wasserstein loss with gradient penalty, to primarily prevent mode collapse. The proposed SuRGe, as an end-to-end GAN workflow tailor-made for super-resolution, offers improved performance while maintaining low inference time. The efficacy of SuRGe is substantiated by its superior performance compared to 18 state-of-the-art contenders on 10 benchmark datasets. A Low Resolution (LR) image sacrifices information of its High Resolution (HR) counterpart in favor of general utility such as displaying or editing in smaller screens, low storage requirement, and fast transmission. Super-resolution attempts to recover the original HR copy from a LR input.
Concurrent Density Estimation with Wasserstein Autoencoders: Some Statistical Insights
Chakrabarty, Anish, Basu, Arkaprabha, Das, Swagatam
Variational Autoencoders (VAEs) have been a pioneering force in the realm of deep generative models. Amongst its legions of progenies, Wasserstein Autoencoders (WAEs) stand out in particular due to the dual offering of heightened generative quality and a strong theoretical backbone. WAEs consist of an encoding and a decoding network forming a bottleneck with the prime objective of generating new samples resembling the ones it was catered to. In the process, they aim to achieve a target latent representation of the encoded data. Our work is an attempt to offer a theoretical understanding of the machinery behind WAEs. From a statistical viewpoint, we pose the problem as concurrent density estimation tasks based on neural network-induced transformations. This allows us to establish deterministic upper bounds on the realized errors WAEs commit. We also analyze the propagation of these stochastic errors in the presence of adversaries. As a result, both the large sample properties of the reconstructed distribution and the resilience of WAE models are explored.
Interval Bound Interpolation for Few-shot Learning with Few Tasks
Datta, Shounak, Mullick, Sankha Subhra, Chakrabarty, Anish, Das, Swagatam
Few-shot learning aims to transfer the knowledge acquired from training on a diverse set of tasks to unseen tasks from the same task distribution with a limited amount of labeled data. The underlying requirement for effective few-shot generalization is to learn a good representation of the task manifold. This becomes more difficult when only a limited number of tasks are available for training. In such a few-task few-shot setting, it is beneficial to explicitly preserve the local neighborhoods from the task manifold and exploit this to generate artificial tasks for training. To this end, we introduce the notion of interval bounds from the provably robust training literature to few-shot learning. The interval bounds are used to characterize neighborhoods around the training tasks. These neighborhoods can then be preserved by minimizing the distance between a task and its respective bounds. We then use a novel strategy to artificially form new tasks for training by interpolating between the available tasks and their respective interval bounds. We apply our framework to both model-agnostic meta-learning as well as prototype-based metric-learning paradigms. The efficacy of our proposed approach is evident from the improved performance on several datasets from diverse domains compared to current methods.
Statistical Regeneration Guarantees of the Wasserstein Autoencoder with Latent Space Consistency
Chakrabarty, Anish, Das, Swagatam
The introduction of Variational Autoencoders (VAE) has been marked as a breakthrough in the history of representation learning models. Besides having several accolades of its own, VAE has successfully flagged off a series of inventions in the form of its immediate successors. Wasserstein Autoencoder (WAE), being an heir to that realm carries with it all of the goodness and heightened generative promises, matching even the generative adversarial networks (GANs). Needless to say, recent years have witnessed a remarkable resurgence in statistical analyses of the GANs. Similar examinations for Autoencoders, however, despite their diverse applicability and notable empirical performance, remain largely absent. To close this gap, in this paper, we investigate the statistical properties of WAE. Firstly, we provide statistical guarantees that WAE achieves the target distribution in the latent space, utilizing the Vapnik Chervonenkis (VC) theory. The main result, consequently ensures the regeneration of the input distribution, harnessing the potential offered by Optimal Transport of measures under the Wasserstein metric. This study, in turn, hints at the class of distributions WAE can reconstruct after suffering a compression in the form of a latent law.