Chakma, Avijoy
A Systematic Study on Object Recognition Using Millimeter-wave Radar
Devnath, Maloy Kumar, Chakma, Avijoy, Anwar, Mohammad Saeid, Dey, Emon, Hasan, Zahid, Conn, Marc, Pal, Biplab, Roy, Nirmalya
Millimeter-wave (MMW) radar is becoming an essential sensing technology in smart environments due to its light and weatherindependent sensing capability. Such capabilities have been widely explored and integrated with intelligent vehicle systems, often deployed in industry-grade MMW radars. However, industry-grade MMW radars are often expensive and difficult to attain for deployable community-purpose smart environment applications. On the other hand, commercially available MMW radars pose hidden underpinning challenges that are yet to be well investigated for tasks such as recognizing objects, and activities, real-time person tracking, object localization, etc. Such tasks are frequently accompanied by image and video data, which are relatively easy for an individual to obtain, interpret, and annotate. However, image and video data are light and weather-dependent, vulnerable to the occlusion effect, and inherently raise privacy concerns for individuals. It is crucial to investigate the performance of an alternative sensing mechanism where commercially available MMW radars can be a viable alternative to eradicate the dependencies and preserve privacy issues. Before championing MMW radar, several questions need to be answered regarding MMW radar's practical feasibility and performance under different operating environments. To answer the concerns, we have collected a dataset using commercially available MMW radar, Automotive mmWave Radar (AWR2944) from Texas Instruments, and reported the optimum experimental settings for object recognition performance using several deep learning algorithms in this study. Moreover, our robust data collection procedure allows us to systematically study and identify potential challenges in the object recognition task under a cross-ambience scenario.
Domain Adaptation for Inertial Measurement Unit-based Human Activity Recognition: A Survey
Chakma, Avijoy, Faridee, Abu Zaher Md, Ghosh, Indrajeet, Roy, Nirmalya
Machine learning-based wearable human activity recognition (WHAR) models enable the development of various smart and connected community applications such as sleep pattern monitoring, medication reminders, cognitive health assessment, sports analytics, etc. However, the widespread adoption of these WHAR models is impeded by their degraded performance in the presence of data distribution heterogeneities caused by the sensor placement at different body positions, inherent biases and heterogeneities across devices, and personal and environmental diversities. Various traditional machine learning algorithms and transfer learning techniques have been proposed in the literature to address the underpinning challenges of handling such data heterogeneities. Domain adaptation is one such transfer learning techniques that has gained significant popularity in recent literature. In this paper, we survey the recent progress of domain adaptation techniques in the Inertial Measurement Unit (IMU)-based human activity recognition area, discuss potential future directions.