Chai, Senchun
Opinion Dynamic Under Malicious Agent Influence in Multi-Agent Systems: From the Perspective of Opinion Evolution Cost
Suo, Yuhan, Chai, Runqi, Chai, Senchun, Farhan, Ishrak MD, Zhao, Xudong, Xia, Yuanqing
In human social systems, debates are often seen as a means to resolve differences of opinion. However, in reality, debates frequently incur significant communication costs, especially when dealing with stubborn opponents. Inspired by this phenomenon, this paper examines the impact of malicious agents on the evolution of normal agents' opinions from the perspective of opinion evolution cost, and proposes corresponding solutions for the scenario in which malicious agents hold different opinions in multi-agent systems(MASs). First, this paper analyzes the negative impact of malicious agents on the opinion evolution process, reveals the additional evolution cost it brings, and provides a theoretical basis for the subsequent solutions. Secondly, based on the characteristics of opinion evolution, the malicious agent isolation algorithm based on opinion evolution direction vector is proposed, which does not strongly restrict the proportion of malicious agents. Additionally, an evolution rate adjustment mechanism is introduced, allowing the system to flexibly regulate the evolution process in complex situations, effectively achieving the trade-off between opinion evolution rate and cost. Extensive numerical simulations demonstrate that the algorithm can effectively eliminate the negative influence of malicious agents and achieve a balance between opinion evolution costs and convergence speed.
A Transformer-based Generative Adversarial Network for Brain Tumor Segmentation
Huang, Liqun, Chen, Long, Zhang, Baihai, Chai, Senchun
Brain tumor segmentation remains a challenge in medical image segmentation tasks. With the application of transformer in various computer vision tasks, transformer blocks show the capability of learning long-distance dependency in global space, which is complementary with CNNs. In this paper, we proposed a novel transformer-based generative adversarial network to automatically segment brain tumors with multi-modalities MRI. Our architecture consists of a generator and a discriminator, which are trained in min-max game progress. The generator is based on a typical "U-shaped" encoder-decoder architecture, whose bottom layer is composed of transformer blocks with resnet. Besides, the generator is trained with deep supervision technology. The discriminator we designed is a CNN-based network with multi-scale $L_{1}$ loss, which is proved to be effective for medical semantic image segmentation. To validate the effectiveness of our method, we conducted experiments on BRATS2015 dataset, achieving comparable or better performance than previous state-of-the-art methods.