Chai, Di
DH-RAG: A Dynamic Historical Context-Powered Retrieval-Augmented Generation Method for Multi-Turn Dialogue
Zhang, Feiyuan, Zhu, Dezhi, Ming, James, Jin, Yilun, Chai, Di, Yang, Liu, Tian, Han, Fan, Zhaoxin, Chen, Kai
Retrieval-Augmented Generation (RAG) systems have shown substantial benefits in applications such as question answering and multi-turn dialogue [22]. However, traditional RAG methods, while leveraging static knowledge bases, often overlook the potential of dynamic historical information in ongoing conversations. To bridge this gap, we introduce DH-RAG, a Dynamic Historical Context-Powered Retrieval-Augmented Generation Method for Multi-Turn Dialogue. DH-RAG is inspired by human cognitive processes that utilize both long-term memory and immediate historical context in conversational responses [32]. DH-RAG is structured around two principal components: a History-Learning based Query Reconstruction Module, designed to generate effective queries by synthesizing current and prior interactions, and a Dynamic History Information Updating Module, which continually refreshes historical context throughout the dialogue. The center of DH-RAG is a Dynamic Historical Information database, which is further refined by three strategies within the Query Reconstruction Module: Historical Query Clustering, Hierarchical Matching, and Chain of Thought Tracking. Experimental evaluations show that DH-RAG significantly surpasses conventional models on several benchmarks, enhancing response relevance, coherence, and dialogue quality.
Enhancing Token Filtering Efficiency in Large Language Model Training with Collider
Chai, Di, Li, Pengbo, Zhang, Feiyuan, Jin, Yilun, Tian, Han, Zhang, Junxue, Chen, Kai
Token filtering has been proposed to enhance utility of large language models (LLMs) by eliminating inconsequential tokens during training. While using fewer tokens should reduce computational workloads, existing studies have not succeeded in achieving higher efficiency. This is primarily due to the insufficient sparsity caused by filtering tokens only in the output layers, as well as inefficient sparse GEMM (General Matrix Multiplication), even when having sufficient sparsity. This paper presents Collider, a system unleashing the full efficiency of token filtering in LLM training. At its core, Collider filters activations of inconsequential tokens across all layers to maintain sparsity. Additionally, it features an automatic workflow that transforms sparse GEMM into dimension-reduced dense GEMM for optimized efficiency. Evaluations on three LLMs-TinyLlama-1.1B, Qwen2.5-1.5B, and Phi1.5-1.4B-demonstrate that Collider reduces backpropagation time by up to 35.1% and end-to-end training time by up to 22.0% when filtering 40% of tokens. Utility assessments of training TinyLlama on 15B tokens indicate that Collider sustains the utility advancements of token filtering by relatively improving model utility by 16.3% comparing to regular training, and reduces training time from 4.7 days to 3.5 days using 8 GPUs. Collider is designed for easy integration into existing LLM training frameworks, allowing systems already using token filtering to accelerate training with just one line of code.
PackVFL: Efficient HE Packing for Vertical Federated Learning
Yang, Liu, Cai, Shuowei, Chai, Di, Zhang, Junxue, Tian, Han, Jin, Yilun, Guo, Kun, Chen, Kai, Yang, Qiang
As an essential tool of secure distributed machine learning, vertical federated learning (VFL) based on homomorphic encryption (HE) suffers from severe efficiency problems due to data inflation and time-consuming operations. To this core, we propose PackVFL, an efficient VFL framework based on packed HE (PackedHE), to accelerate the existing HE-based VFL algorithms. PackVFL packs multiple cleartexts into one ciphertext and supports single-instruction-multiple-data (SIMD)-style parallelism. We focus on designing a high-performant matrix multiplication (MatMult) method since it takes up most of the ciphertext computation time in HE-based VFL. Besides, devising the MatMult method is also challenging for PackedHE because a slight difference in the packing way could predominantly affect its computation and communication costs. Without domain-specific design, directly applying SOTA MatMult methods is hard to achieve optimal. Therefore, we make a three-fold design: 1) we systematically explore the current design space of MatMult and quantify the complexity of existing approaches to provide guidance; 2) we propose a hybrid MatMult method according to the unique characteristics of VFL; 3) we adaptively apply our hybrid method in representative VFL algorithms, leveraging distinctive algorithmic properties to further improve efficiency. As the batch size, feature dimension and model size of VFL scale up to large sizes, PackVFL consistently delivers enhanced performance. Empirically, PackVFL propels existing VFL algorithms to new heights, achieving up to a 51.52X end-to-end speedup. This represents a substantial 34.51X greater speedup compared to the direct application of SOTA MatMult methods.
A Survey for Federated Learning Evaluations: Goals and Measures
Chai, Di, Wang, Leye, Yang, Liu, Zhang, Junxue, Chen, Kai, Yang, Qiang
Evaluation is a systematic approach to assessing how well a system achieves its intended purpose. Federated learning (FL) is a novel paradigm for privacy-preserving machine learning that allows multiple parties to collaboratively train models without sharing sensitive data. However, evaluating FL is challenging due to its interdisciplinary nature and diverse goals, such as utility, efficiency, and security. In this survey, we first review the major evaluation goals adopted in the existing studies and then explore the evaluation metrics used for each goal. We also introduce FedEval, an open-source platform that provides a standardized and comprehensive evaluation framework for FL algorithms in terms of their utility, efficiency, and security. Finally, we discuss several challenges and future research directions for FL evaluation.
UCTB: An Urban Computing Tool Box for Spatiotemporal Crowd Flow Prediction
Chen, Liyue, Chai, Di, Wang, Leye
Spatiotemporal crowd flow prediction is one of the key technologies in smart cities. Currently, there are two major pain points that plague related research and practitioners. Firstly, crowd flow is related to multiple domain knowledge factors; however, due to the diversity of application scenarios, it is difficult for subsequent work to make reasonable and comprehensive use of domain knowledge. Secondly, with the development of deep learning technology, the implementation of relevant techniques has become increasingly complex; reproducing advanced models has become a time-consuming and increasingly cumbersome task. To address these issues, we design and implement a spatiotemporal crowd flow prediction toolbox called UCTB (Urban Computing Tool Box), which integrates multiple spatiotemporal domain knowledge and state-of-the-art models simultaneously. The relevant code and supporting documents have been open-sourced at https://github.com/uctb/UCTB.
A Survey on Vertical Federated Learning: From a Layered Perspective
Yang, Liu, Chai, Di, Zhang, Junxue, Jin, Yilun, Wang, Leye, Liu, Hao, Tian, Han, Xu, Qian, Chen, Kai
Vertical federated learning (VFL) is a promising category of federated learning for the scenario where data is vertically partitioned and distributed among parties. VFL enriches the description of samples using features from different parties to improve model capacity. Compared with horizontal federated learning, in most cases, VFL is applied in the commercial cooperation scenario of companies. Therefore, VFL contains tremendous business values. In the past few years, VFL has attracted more and more attention in both academia and industry. In this paper, we systematically investigate the current work of VFL from a layered perspective. From the hardware layer to the vertical federated system layer, researchers contribute to various aspects of VFL. Moreover, the application of VFL has covered a wide range of areas, e.g., finance, healthcare, etc. At each layer, we categorize the existing work and explore the challenges for the convenience of further research and development of VFL. Especially, we design a novel MOSP tree taxonomy to analyze the core component of VFL, i.e., secure vertical federated machine learning algorithm. Our taxonomy considers four dimensions, i.e., machine learning model (M), protection object (O), security model (S), and privacy-preserving protocol (P), and provides a comprehensive investigation.
FedEval: A Holistic Evaluation Framework for Federated Learning
Chai, Di, Wang, Leye, Yang, Liu, Zhang, Junxue, Chen, Kai, Yang, Qiang
Federated Learning (FL) has been widely accepted as the solution for privacy-preserving machine learning without collecting raw data. While new technologies proposed in the past few years do evolve the FL area, unfortunately, the evaluation results presented in these works fall short in integrity and are hardly comparable because of the inconsistent evaluation metrics and experimental settings. In this paper, we propose a holistic evaluation framework for FL called FedEval, and present a benchmarking study on seven state-of-the-art FL algorithms. Specifically, we first introduce the core evaluation taxonomy model, called FedEval-Core, which covers four essential evaluation aspects for FL: Privacy, Robustness, Effectiveness, and Efficiency, with various well-defined metrics and experimental settings. Based on the FedEval-Core, we further develop an FL evaluation platform with standardized evaluation settings and easy-to-use interfaces. We then provide an in-depth benchmarking study between the seven well-known FL algorithms, including FedSGD, FedAvg, FedProx, FedOpt, FedSTC, SecAgg, and HEAgg. We comprehensively analyze the advantages and disadvantages of these algorithms and further identify the suitable practical scenarios for different algorithms, which is rarely done by prior work. Lastly, we excavate a set of take-away insights and future research directions, which are very helpful for researchers in the FL area.
Aegis: A Trusted, Automatic and Accurate Verification Framework for Vertical Federated Learning
Zhang, Cengguang, Zhang, Junxue, Chai, Di, Chen, Kai
Vertical federated learning (VFL) leverages various privacy-preserving algorithms, e.g., homomorphic encryption or secret sharing based SecureBoost, to ensure data privacy. However, these algorithms all require a semi-honest secure definition, which raises concerns in real-world applications. In this paper, we present Aegis, a trusted, automatic, and accurate verification framework to verify the security of VFL jobs. Aegis is separated from local parties to ensure the security of the framework. Furthermore, it automatically adapts to evolving VFL algorithms by defining the VFL job as a finite state machine to uniformly verify different algorithms and reproduce the entire job to provide more accurate verification. We implement and evaluate Aegis with different threat models on financial and medical datasets. Evaluation results show that: 1) Aegis can detect 95% threat models, and 2) it provides fine-grained verification results within 84% of the total VFL job time.
Exploring the Generalizability of Spatio-Temporal Crowd Flow Prediction: Meta-Modeling and an Analytic Framework
Wang, Leye, Chai, Di, Liu, Xuanzhe, Chen, Liyue, Chen, Kai
The Spatio-Temporal Crowd Flow Prediction (STCFP) problem is a classical problem with plenty of prior research efforts that benefit from traditional statistical learning and recent deep learning approaches. While STCFP can refer to many real-world problems, most existing studies focus on quite specific applications, such as the prediction of taxi demand, ridesharing order, and so on. This hinders the STCFP research as the approaches designed for different applications are hardly comparable, and thus how an applicationdriven approach can be generalized to other scenarios is unclear. To fill in this gap, this paper makes two efforts: (i) we propose an analytic framework, called STAnalytic, to qualitatively investigate STCFP approaches regarding their design considerations on various spatial and temporal factors, aiming to make different application-driven approaches comparable; (ii) we construct an extensively large-scale STCFP benchmark datasets with four different scenarios (including ridesharing, bikesharing, metro, and electrical vehicle charging) with up to hundreds of millions of flow records, to quantitatively measure the generalizability of STCFP approaches. Furthermore, to elaborate the effectiveness of STAnalytic in helping design generalizable STCFP approaches, we propose a spatio-temporal meta-model, called STMeta, by integrating generalizable temporal and spatial knowledge identified by STAnalytic. We implement three variants of STMeta with different deep learning techniques. With the datasets, we demonstrate that STMeta variants can outperform state-of-the-art STCFP approaches by 5%.
Bike Flow Prediction with Multi-Graph Convolutional Networks
Chai, Di, Wang, Leye, Yang, Qiang
One fundamental issue in managing bike sharing systems is the bike flow prediction. Due to the hardness of predicting the flow for a single station, recent research works often predict the bike flow at cluster-level. While such studies gain satisfactory prediction accuracy, they cannot directly guide some fine-grained bike sharing system management issues at station-level. In this paper, we revisit the problem of the station-level bike flow prediction, aiming to boost the prediction accuracy leveraging the breakthroughs of deep learning techniques. We propose a new multi-graph convolutional neural network model to predict the bike flow at station-level, where the key novelty is viewing the bike sharing system from the graph perspective. More specifically, we construct multiple inter-station graphs for a bike sharing system. In each graph, nodes are stations, and edges are a certain type of relations between stations. Then, multiple graphs are constructed to reflect heterogeneous relationships (e.g., distance, ride record correlation). Afterward, we fuse the multiple graphs and then apply the convolutional layers on the fused graph to predict station-level future bike flow. In addition to the estimated bike flow value, our model also gives the prediction confidence interval so as to help the bike sharing system managers make decisions. Using New York City and Chicago bike sharing data for experiments, our model can outperform state-of-the-art station-level prediction models by reducing 25.1% and 17.0% of prediction error in New York City and Chicago, respectively.