Goto

Collaborating Authors

 Cebrian, Manuel


General Scales Unlock AI Evaluation with Explanatory and Predictive Power

arXiv.org Artificial Intelligence

Ensuring safe and effective use of AI requires understanding and anticipating its performance on novel tasks, from advanced scientific challenges to transformed workplace activities. So far, benchmarking has guided progress in AI, but it has offered limited explanatory and predictive power for general-purpose AI systems, given the low transferability across diverse tasks. In this paper, we introduce general scales for AI evaluation that can explain what common AI benchmarks really measure, extract ability profiles of AI systems, and predict their performance for new task instances, in- and out-of-distribution. Our fully-automated methodology builds on 18 newly-crafted rubrics that place instance demands on general scales that do not saturate. Illustrated for 15 large language models and 63 tasks, high explanatory power is unleashed from inspecting the demand and ability profiles, bringing insights on the sensitivity and specificity exhibited by different benchmarks, and how knowledge, metacognition and reasoning are affected by model size, chain-of-thought and distillation. Surprisingly, high predictive power at the instance level becomes possible using these demand levels, providing superior estimates over black-box baseline predictors based on embeddings or finetuning, especially in out-of-distribution settings (new tasks and new benchmarks). The scales, rubrics, battery, techniques and results presented here represent a major step for AI evaluation, underpinning the reliable deployment of AI in the years ahead. (Collaborative platform: https://kinds-of-intelligence-cfi.github.io/ADELE.)


Supervision policies can shape long-term risk management in general-purpose AI models

arXiv.org Artificial Intelligence

The rapid proliferation and deployment of General-Purpose AI (GPAI) models, including large language models (LLMs), present unprecedented challenges for AI supervisory entities. We hypothesize that these entities will need to navigate an emergent ecosystem of risk and incident reporting, likely to exceed their supervision capacity. To investigate this, we develop a simulation framework parameterized by features extracted from the diverse landscape of risk, incident, or hazard reporting ecosystems, including community-driven platforms, crowdsourcing initiatives, and expert assessments. We evaluate four supervision policies: non-prioritized (first-come, first-served), random selection, priority-based (addressing the highest-priority risks first), and diversity-prioritized (balancing high-priority risks with comprehensive coverage across risk types). Our results indicate that while priority-based and diversity-prioritized policies are more effective at mitigating high-impact risks, particularly those identified by experts, they may inadvertently neglect systemic issues reported by the broader community. This oversight can create feedback loops that amplify certain types of reporting while discouraging others, leading to a skewed perception of the overall risk landscape. We validate our simulation results with several real-world datasets, including one with over a million ChatGPT interactions, of which more than 150,000 conversations were identified as risky. This validation underscores the complex trade-offs inherent in AI risk supervision and highlights how the choice of risk management policies can shape the future landscape of AI risks across diverse GPAI models used in society.


Can adversarial attacks by large language models be attributed?

arXiv.org Artificial Intelligence

Attributing outputs from Large Language Models (LLMs) in adversarial settings-such as cyberattacks and disinformation-presents significant challenges that are likely to grow in importance. We investigate this attribution problem using formal language theory, specifically language identification in the limit as introduced by Gold and extended by Angluin. By modeling LLM outputs as formal languages, we analyze whether finite text samples can uniquely pinpoint the originating model. Our results show that due to the non-identifiability of certain language classes, under some mild assumptions about overlapping outputs from fine-tuned models it is theoretically impossible to attribute outputs to specific LLMs with certainty. This holds also when accounting for expressivity limitations of Transformer architectures. Even with direct model access or comprehensive monitoring, significant computational hurdles impede attribution efforts. These findings highlight an urgent need for proactive measures to mitigate risks posed by adversarial LLM use as their influence continues to expand.


Cooperating with Machines

arXiv.org Artificial Intelligence

Since Alan Turing envisioned Artificial Intelligence (AI) [1], a major driving force behind technical progress has been competition with human cognition. Historical milestones have been frequently associated with computers matching or outperforming humans in difficult cognitive tasks (e.g. face recognition [2], personality classification [3], driving cars [4], or playing video games [5]), or defeating humans in strategic zero-sum encounters (e.g. Chess [6], Checkers [7], Jeopardy! [8], Poker [9], or Go [10]). In contrast, less attention has been given to developing autonomous machines that establish mutually cooperative relationships with people who may not share the machine's preferences. A main challenge has been that human cooperation does not require sheer computational power, but rather relies on intuition [11], cultural norms [12], emotions and signals [13, 14, 15, 16], and pre-evolved dispositions toward cooperation [17], common-sense mechanisms that are difficult to encode in machines for arbitrary contexts. Here, we combine a state-of-the-art machine-learning algorithm with novel mechanisms for generating and acting on signals to produce a new learning algorithm that cooperates with people and other machines at levels that rival human cooperation in a variety of two-player repeated stochastic games. This is the first general-purpose algorithm that is capable, given a description of a previously unseen game environment, of learning to cooperate with people within short timescales in scenarios previously unanticipated by algorithm designers. This is achieved without complex opponent modeling or higher-order theories of mind, thus showing that flexible, fast, and general human-machine cooperation is computationally achievable using a non-trivial, but ultimately simple, set of algorithmic mechanisms.


Superintelligence cannot be contained: Lessons from Computability Theory

arXiv.org Artificial Intelligence

The Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Superintelligence is a hypothetical agent that possesses intelligence far surpassing that of the brightest and most gifted human minds. In light of recent advances in machine intelligence, a number of scientists, philosophers and technologists have revived the discussion about the potential catastrophic risks entailed by such an entity. In this article, we trace the origins and development of the neo-fear of superintelligence, and some of the major proposals for its containment. We argue that such containment is, in principle, impossible, due to fundamental limits inherent to computing itself. Assuming that a superintelligence will contain a program that includes all the programs that can be executed by a universal Turing machine on input potentially as complex as the state of the world, strict containment requires simulations of such a program, something theoretically (and practically) infeasible.


The Genetic Algorithm as a General Diffusion Model for Social Networks

AAAI Conferences

Diffusion processes taking place in social networks are used to model a number of phenomena, such as the spread of human or computer viruses, and the adoption of products in viral marketing campaigns. It is generally difficult to obtain accurate information about how such spreads actually occur, so a variety of stochastic diffusion models are used to simulate spreading processes in networks instead. We show that a canonical genetic algorithm with a spatially distributed population, when paired with specific forms of Holland's synthetic hyperplane-defined objective functions, can simulate a large and rich class of diffusion models for social networks. These include standard diffusion models, such as the Independent Cascade and Competing Processes models. In addition, our Genetic Algorithm Diffusion Model (GADM) can also model complex phenomena such as information diffusion. We demonstrate an application of the GADM to modeling information flow in a large, dynamic social network derived from e-mail headers.