Goto

Collaborating Authors

 Caus, Marius


Probabilistic Forecasting for Network Resource Analysis in Integrated Terrestrial and Non-Terrestrial Networks

arXiv.org Artificial Intelligence

Efficient resource management is critical for Non-Terrestrial Networks (NTNs) to provide consistent, high-quality service in remote and under-served regions. While traditional single-point prediction methods, such as Long-Short Term Memory (LSTM), have been used in terrestrial networks, they often fall short in NTNs due to the complexity of satellite dynamics, signal latency and coverage variability. Probabilistic forecasting, which quantifies the uncertainties of the predictions, is a robust alternative. In this paper, we evaluate the application of probabilistic forecasting techniques, in particular SFF, to NTN resource allocation scenarios. Our results show their effectiveness in predicting bandwidth and capacity requirements in different NTN segments of probabilistic forecasting compared to single-point prediction techniques such as LSTM. The results show the potential of black probabilistic forecasting models to provide accurate and reliable predictions and to quantify their uncertainty, making them indispensable for optimizing NTN resource allocation. At the end of the paper, we also present application scenarios and a standardization roadmap for the use of probabilistic forecasting in integrated Terrestrial Network (TN)-NTN environments.


Fed-KAN: Federated Learning with Kolmogorov-Arnold Networks for Traffic Prediction

arXiv.org Artificial Intelligence

Non-Terrestrial Networks (NTNs) are becoming a critical component of modern communication infrastructures, especially with the advent of Low Earth Orbit (LEO) satellite systems. Traditional centralized learning approaches face major challenges in such networks due to high latency, intermittent connectivity and limited bandwidth. Federated Learning (FL) is a promising alternative as it enables decentralized training while maintaining data privacy. However, existing FL models, such as Federated Learning with Multi-Layer Perceptrons (Fed-MLP), can struggle with high computational complexity and poor adaptability to dynamic NTN environments. This paper provides a detailed analysis for Federated Learning with Kolmogorov-Arnold Networks (Fed-KAN), its implementation and performance improvements over traditional FL models in NTN environments for traffic forecasting. The proposed Fed-KAN is a novel approach that utilises the functional approximation capabilities of KANs in a FL framework. We evaluate Fed-KAN compared to Fed-MLP on a traffic dataset of real satellite operator and show a significant reduction in training and test loss. Our results show that Fed-KAN can achieve a 77.39% reduction in average test loss compared to Fed-MLP, highlighting its improved performance and better generalization ability. At the end of the paper, we also discuss some potential applications of Fed-KAN within O-RAN and Fed-KAN usage for split functionalities in NTN architecture.