Goto

Collaborating Authors

 Cauligi, Abhishek


Diffusion Policies for Generative Modeling of Spacecraft Trajectories

arXiv.org Artificial Intelligence

Despite its promise and the tremendous advances in nonlinear optimization solvers in recent years, trajectory optimization has primarily been constrained to offline usage due to the limited compute capabilities of radiation hardened flight computers [3]. However, with a flurry of proposed mission concepts that call for increasingly greater on-board autonomy [4], bridging this gap in the state-of-practice is necessary to allow for scaling current trajectory design techniques for future missions. Recently, researchers have turned to machine learning and data-driven techniques as a promising method for reducing the runtimes necessary for solving challenging constrained optimization problems [5, 6]. Such approaches entail learning what is known as the problem-to-solution mapping between the problem parameters that vary between repeated instances of solving the trajectory optimization problem to the full optimization solution and these works typically use a Deep Neural Network (DNN) to model this mapping [7-9]. Given parameters of new instances of the trajectory optimization problem, this problem-to-solution mapping can be used online to yield candidate trajectories to warm start the nonlinear optimization solver and this warm start can enable significant solution speed ups. One shortcoming of these aforementioned data-driven approaches is that they have limited scope of use and the learned problem-to-solution mapping only applies for one specific trajectory optimization formulation. With a change to the mission design specifications that yields, e.g., a different optimization constraint, a new problem-to-solution mapping has to be learned offline and this necessitates generating a new dataset of solved trajectory optimization problems. To this end, our work explores the use of compositional diffusion modeling to allow for generalizable learning of the problem-to-solution mapping and equip mission designers with the ability to interleave different learned models to satisfy a rich set of trajectory design specifications. Compositional diffusion modeling enables training of a model to both sample and plan from.


Tight Constraint Prediction of Six-Degree-of-Freedom Transformer-based Powered Descent Guidance

arXiv.org Artificial Intelligence

This work introduces Transformer-based Successive Convexification (T-SCvx), an extension of Transformer-based Powered Descent Guidance (T-PDG), generalizable for efficient six-degree-of-freedom (DoF) fuel-optimal powered descent trajectory generation. Our approach significantly enhances the sample efficiency and solution quality for nonconvex-powered descent guidance by employing a rotation invariant transformation of the sampled dataset. T-PDG was previously applied to the 3-DoF minimum fuel powered descent guidance problem, improving solution times by up to an order of magnitude compared to lossless convexification (LCvx). By learning to predict the set of tight or active constraints at the optimal control problem's solution, Transformer-based Successive Convexification (T-SCvx) creates the minimal reduced-size problem initialized with only the tight constraints, then uses the solution of this reduced problem to warm-start the direct optimization solver. 6-DoF powered descent guidance is known to be challenging to solve quickly and reliably due to the nonlinear and non-convex nature of the problem, the discretization scheme heavily influencing solution validity, and reference trajectory initialization determining algorithm convergence or divergence. Our contributions in this work address these challenges by extending T-PDG to learn the set of tight constraints for the successive convexification (SCvx) formulation of the 6-DoF powered descent guidance problem. In addition to reducing the problem size, feasible and locally optimal reference trajectories are also learned to facilitate convergence from the initial guess. T-SCvx enables onboard computation of real-time guidance trajectories, demonstrated by a 6-DoF Mars powered landing application problem.


ShadowNav: Autonomous Global Localization for Lunar Navigation in Darkness

arXiv.org Artificial Intelligence

The ability to determine the pose of a rover in an inertial frame autonomously is a crucial capability necessary for the next generation of surface rover missions on other planetary bodies. Currently, most on-going rover missions utilize ground-in-the-loop interventions to manually correct for drift in the pose estimate and this human supervision bottlenecks the distance over which rovers can operate autonomously and carry out scientific measurements. In this paper, we present ShadowNav, an autonomous approach for global localization on the Moon with an emphasis on driving in darkness and at nighttime. Our approach uses the leading edge of Lunar craters as landmarks and a particle filtering approach is used to associate detected craters with known ones on an offboard map. We discuss the key design decisions in developing the ShadowNav framework for use with a Lunar rover concept equipped with a stereo camera and an external illumination source. Finally, we demonstrate the efficacy of our proposed approach in both a Lunar simulation environment and on data collected during a field test at Cinder Lakes, Arizona.


Federated Multi-Agent Mapping for Planetary Exploration

arXiv.org Artificial Intelligence

In multi-agent robotic exploration, managing and effectively utilizing the vast, heterogeneous data generated from dynamic environments poses a significant challenge. Federated learning (FL) is a promising approach for distributed mapping, addressing the challenges of decentralized data in collaborative learning. FL enables joint model training across multiple agents without requiring the centralization or sharing of raw data, overcoming bandwidth and storage constraints. Our approach leverages implicit neural mapping, representing maps as continuous functions learned by neural networks, for compact and adaptable representations. We further enhance this approach with meta-initialization on Earth datasets, pre-training the network to quickly learn new map structures. This combination demonstrates strong generalization to diverse domains like Martian terrain and glaciers. We rigorously evaluate this approach, demonstrating its effectiveness for real-world deployment in multi-agent exploration scenarios.


Constraint-Informed Learning for Warm Starting Trajectory Optimization

arXiv.org Artificial Intelligence

Future spacecraft and surface robotic missions require increasingly capable autonomy stacks for exploring challenging and unstructured domains and trajectory optimization will be a cornerstone of such autonomy stacks. However, the nonlinear optimization solvers required remain too slow for use on relatively resource constrained flight-grade computers. In this work, we turn towards amortized optimization, a learning-based technique for accelerating optimization run times, and present TOAST: Trajectory Optimization with Merit Function Warm Starts. Offline, using data collected from a simulation, we train a neural network to learn a mapping to the full primal and dual solutions given the problem parameters. Crucially, we build upon recent results from decision-focused learning and present a set of decision-focused loss functions using the notion of merit functions for optimization problems. We show that training networks with such constraint-informed losses can better encode the structure of the trajectory optimization problem and jointly learn to reconstruct the primal-dual solution while also yielding improved constraint satisfaction. Through numerical experiments on a Lunar rover problem, we demonstrate that TOAST outperforms benchmark approaches in terms of both computation times and network prediction constraint satisfaction.


Improving Computational Efficiency for Powered Descent Guidance via Transformer-based Tight Constraint Prediction

arXiv.org Artificial Intelligence

In this work, we present Transformer-based Powered Descent Guidance (T-PDG), a scalable algorithm for reducing the computational complexity of the direct optimization formulation of the spacecraft powered descent guidance problem. T-PDG uses data from prior runs of trajectory optimization algorithms to train a transformer neural network, which accurately predicts the relationship between problem parameters and the globally optimal solution for the powered descent guidance problem. The solution is encoded as the set of tight constraints corresponding to the constrained minimum-cost trajectory and the optimal final time of landing. By leveraging the attention mechanism of transformer neural networks, large sequences of time series data can be accurately predicted when given only the spacecraft state and landing site parameters. When applied to the real problem of Mars powered descent guidance, T-PDG reduces the time for computing the 3 degree of freedom fuel-optimal trajectory, when compared to lossless convexification, from an order of 1-8 seconds to less than 500 milliseconds. A safe and optimal solution is guaranteed by including a feasibility check in T-PDG before returning the final trajectory.


ShadowNav: Crater-Based Localization for Nighttime and Permanently Shadowed Region Lunar Navigation

arXiv.org Artificial Intelligence

There has been an increase in interest in missions that drive significantly longer distances per day than what has currently been performed. Further, some of these proposed missions require autonomous driving and absolute localization in darkness. For example, the Endurance A mission proposes to drive 1200km of its total traverse at night. The lack of natural light available during such missions limits what can be used as visual landmarks and the range at which landmarks can be observed. In order for planetary rovers to traverse long ranges, onboard absolute localization is critical to the ability of the rover to maintain its planned trajectory and avoid known hazardous regions. Currently, to accomplish absolute localization, a ground in the loop (GITL) operation is performed wherein a human operator matches local maps or images from onboard with orbital images and maps. This GITL operation limits the distance that can be driven in a day to a few hundred meters, which is the distance that the rover can maintain acceptable localization error via relative methods. Previous work has shown that using craters as landmarks is a promising approach for performing absolute localization on the moon during the day. In this work we present a method of absolute localization that utilizes craters as landmarks and matches detected crater edges on the surface with known craters in orbital maps. We focus on a localization method based on a perception system which has an external illuminator and a stereo camera. We evaluate (1) both monocular and stereo based surface crater edge detection techniques, (2) methods of scoring the crater edge matches for optimal localization, and (3) localization performance on simulated Lunar surface imagery at night. We demonstrate that this technique shows promise for maintaining absolute localization error of less than 10m required for most planetary rover missions.


NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge

arXiv.org Artificial Intelligence

This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved 2nd and 1st place, respectively. We also discuss CoSTAR's demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including: (i) geometric and semantic environment mapping; (ii) a multi-modal positioning system; (iii) traversability analysis and local planning; (iv) global motion planning and exploration behavior; (i) risk-aware mission planning; (vi) networking and decentralized reasoning; and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g. wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.