Castiglioni, Matteo
Regret Minimization for Piecewise Linear Rewards: Contracts, Auctions, and Beyond
Bacchiocchi, Francesco, Castiglioni, Matteo, Marchesi, Alberto, Gatti, Nicola
Most microeconomic models of interest involve optimizing a piecewise linear function. These include contract design in hidden-action principal-agent problems, selling an item in posted-price auctions, and bidding in first-price auctions. When the relevant model parameters are unknown and determined by some (unknown) probability distributions, the problem becomes learning how to optimize an unknown and stochastic piecewise linear reward function. Such a problem is usually framed within an online learning framework, where the decision-maker (learner) seeks to minimize the regret of not knowing an optimal decision in hindsight. This paper introduces a general online learning framework that offers a unified approach to tackle regret minimization for piecewise linear rewards, under a suitable monotonicity assumption commonly satisfied by microeconomic models. We design a learning algorithm that attains a regret of $\widetilde{O}(\sqrt{nT})$, where $n$ is the number of ``pieces'' of the reward function and $T$ is the number of rounds. This result is tight when $n$ is \emph{small} relative to $T$, specifically when $n \leq T^{1/3}$. Our algorithm solves two open problems in the literature on learning in microeconomic settings. First, it shows that the $\widetilde{O}(T^{2/3})$ regret bound obtained by Zhu et al. [Zhu+23] for learning optimal linear contracts in hidden-action principal-agent problems is not tight when the number of agent's actions is small relative to $T$. Second, our algorithm demonstrates that, in the problem of learning to set prices in posted-price auctions, it is possible to attain suitable (and desirable) instance-independent regret bounds, addressing an open problem posed by Cesa-Bianchi et al. [CBCP19].
Nearly-Optimal Bandit Learning in Stackelberg Games with Side Information
Balcan, Maria-Florina, Bernasconi, Martino, Castiglioni, Matteo, Celli, Andrea, Harris, Keegan, Wu, Zhiwei Steven
We study the problem of online learning in Stackelberg games with side information between a leader and a sequence of followers. In every round the leader observes contextual information and commits to a mixed strategy, after which the follower best-responds. We provide learning algorithms for the leader which achieve $O(T^{1/2})$ regret under bandit feedback, an improvement from the previously best-known rates of $O(T^{2/3})$. Our algorithms rely on a reduction to linear contextual bandits in the utility space: In each round, a linear contextual bandit algorithm recommends a utility vector, which our algorithm inverts to determine the leader's mixed strategy. We extend our algorithms to the setting in which the leader's utility function is unknown, and also apply it to the problems of bidding in second-price auctions with side information and online Bayesian persuasion with public and private states. Finally, we observe that our algorithms empirically outperform previous results on numerical simulations.
Best-of-Both-Worlds Policy Optimization for CMDPs with Bandit Feedback
Stradi, Francesco Emanuele, Lunghi, Anna, Castiglioni, Matteo, Marchesi, Alberto, Gatti, Nicola
We study online learning in constrained Markov decision processes (CMDPs) in which rewards and constraints may be either stochastic or adversarial. In such settings, Stradi et al.(2024) proposed the first best-of-both-worlds algorithm able to seamlessly handle stochastic and adversarial constraints, achieving optimal regret and constraint violation bounds in both cases. This algorithm suffers from two major drawbacks. First, it only works under full feedback, which severely limits its applicability in practice. Moreover, it relies on optimizing over the space of occupancy measures, which requires solving convex optimization problems, an highly inefficient task. In this paper, we provide the first best-of-both-worlds algorithm for CMDPs with bandit feedback. Specifically, when the constraints are stochastic, the algorithm achieves $\widetilde{\mathcal{O}}(\sqrt{T})$ regret and constraint violation, while, when they are adversarial, it attains $\widetilde{\mathcal{O}}(\sqrt{T})$ constraint violation and a tight fraction of the optimal reward. Moreover, our algorithm is based on a policy optimization approach, which is much more efficient than occupancy-measure-based methods.
Optimal Strong Regret and Violation in Constrained MDPs via Policy Optimization
Stradi, Francesco Emanuele, Castiglioni, Matteo, Marchesi, Alberto, Gatti, Nicola
We study online learning in \emph{constrained MDPs} (CMDPs), focusing on the goal of attaining sublinear strong regret and strong cumulative constraint violation. Differently from their standard (weak) counterparts, these metrics do not allow negative terms to compensate positive ones, raising considerable additional challenges. Efroni et al. (2020) were the first to propose an algorithm with sublinear strong regret and strong violation, by exploiting linear programming. Thus, their algorithm is highly inefficient, leaving as an open problem achieving sublinear bounds by means of policy optimization methods, which are much more efficient in practice. Very recently, Muller et al. (2024) have partially addressed this problem by proposing a policy optimization method that allows to attain $\widetilde{\mathcal{O}}(T^{0.93})$ strong regret/violation. This still leaves open the question of whether optimal bounds are achievable by using an approach of this kind. We answer such a question affirmatively, by providing an efficient policy optimization algorithm with $\widetilde{\mathcal{O}}(\sqrt{T})$ strong regret/violation. Our algorithm implements a primal-dual scheme that employs a state-of-the-art policy optimization approach for adversarial (unconstrained) MDPs as primal algorithm, and a UCB-like update for dual variables.
Learning Constrained Markov Decision Processes With Non-stationary Rewards and Constraints
Stradi, Francesco Emanuele, Lunghi, Anna, Castiglioni, Matteo, Marchesi, Alberto, Gatti, Nicola
In constrained Markov decision processes (CMDPs) with adversarial rewards and constraints, a well-known impossibility result prevents any algorithm from attaining both sublinear regret and sublinear constraint violation, when competing against a best-in-hindsight policy that satisfies constraints on average. In this paper, we show that this negative result can be eased in CMDPs with non-stationary rewards and constraints, by providing algorithms whose performances smoothly degrade as non-stationarity increases. Specifically, we propose algorithms attaining $\tilde{\mathcal{O}} (\sqrt{T} + C)$ regret and positive constraint violation under bandit feedback, where $C$ is a corruption value measuring the environment non-stationarity. This can be $\Theta(T)$ in the worst case, coherently with the impossibility result for adversarial CMDPs. First, we design an algorithm with the desired guarantees when $C$ is known. Then, in the case $C$ is unknown, we show how to obtain the same results by embedding such an algorithm in a general meta-procedure. This is of independent interest, as it can be applied to any non-stationary constrained online learning setting.
Learning Adversarial MDPs with Stochastic Hard Constraints
Stradi, Francesco Emanuele, Castiglioni, Matteo, Marchesi, Alberto, Gatti, Nicola
We study online learning problems in constrained Markov decision processes (CMDPs) with adversarial losses and stochastic hard constraints. We consider two different scenarios. In the first one, we address general CMDPs, where we design an algorithm that attains sublinear regret and cumulative positive constraints violation. In the second scenario, under the mild assumption that a policy strictly satisfying the constraints exists and is known to the learner, we design an algorithm that achieves sublinear regret while ensuring that the constraints are satisfied at every episode with high probability. To the best of our knowledge, our work is the first to study CMDPs involving both adversarial losses and hard constraints. Indeed, previous works either focus on much weaker soft constraints--allowing for positive violation to cancel out negative ones--or are restricted to stochastic losses. Thus, our algorithms can deal with general non-stationary environments subject to requirements much stricter than those manageable with state-of-the-art algorithms. This enables their adoption in a much wider range of real-world applications, ranging from autonomous driving to online advertising and recommender systems.
Markov Persuasion Processes: Learning to Persuade from Scratch
Bacchiocchi, Francesco, Stradi, Francesco Emanuele, Castiglioni, Matteo, Marchesi, Alberto, Gatti, Nicola
In Bayesian persuasion, an informed sender strategically discloses information to a receiver so as to persuade them to undertake desirable actions. Recently, a growing attention has been devoted to settings in which sender and receivers interact sequentially. Recently, Markov persuasion processes (MPPs) have been introduced to capture sequential scenarios where a sender faces a stream of myopic receivers in a Markovian environment. The MPPs studied so far in the literature suffer from issues that prevent them from being fully operational in practice, e.g., they assume that the sender knows receivers' rewards. We fix such issues by addressing MPPs where the sender has no knowledge about the environment. We design a learning algorithm for the sender, working with partial feedback. We prove that its regret with respect to an optimal information-disclosure policy grows sublinearly in the number of episodes, as it is the case for the loss in persuasiveness cumulated while learning. Moreover, we provide a lower bound for our setting matching the guarantees of our algorithm.
Learning Optimal Contracts: How to Exploit Small Action Spaces
Bacchiocchi, Francesco, Castiglioni, Matteo, Marchesi, Alberto, Gatti, Nicola
We study principal-agent problems in which a principal commits to an outcome-dependent payment scheme -- called contract -- in order to induce an agent to take a costly, unobservable action leading to favorable outcomes. We consider a generalization of the classical (single-round) version of the problem in which the principal interacts with the agent by committing to contracts over multiple rounds. The principal has no information about the agent, and they have to learn an optimal contract by only observing the outcome realized at each round. We focus on settings in which the size of the agent's action space is small. We design an algorithm that learns an approximately-optimal contract with high probability in a number of rounds polynomial in the size of the outcome space, when the number of actions is constant. Our algorithm solves an open problem by Zhu et al.[2022]. Moreover, it can also be employed to provide a $\tilde{\mathcal{O}}(T^{4/5})$ regret bound in the related online learning setting in which the principal aims at maximizing their cumulative utility, thus considerably improving previously-known regret bounds.
Bandits with Replenishable Knapsacks: the Best of both Worlds
Bernasconi, Martino, Castiglioni, Matteo, Celli, Andrea, Fusco, Federico
The bandits with knapsack (BwK) framework models online decision-making problems in which an agent makes a sequence of decisions subject to resource consumption constraints. The traditional model assumes that each action consumes a non-negative amount of resources and the process ends when the initial budgets are fully depleted. We study a natural generalization of the BwK framework which allows non-monotonic resource utilization, i.e., resources can be replenished by a positive amount. We propose a best-of-both-worlds primal-dual template that can handle any online learning problem with replenishment for which a suitable primal regret minimizer exists. In particular, we provide the first positive results for the case of adversarial inputs by showing that our framework guarantees a constant competitive ratio $\alpha$ when $B=\Omega(T)$ or when the possible per-round replenishment is a positive constant. Moreover, under a stochastic input model, our algorithm yields an instance-independent $\tilde{O}(T^{1/2})$ regret bound which complements existing instance-dependent bounds for the same setting. Finally, we provide applications of our framework to some economic problems of practical relevance.
Online Learning under Budget and ROI Constraints and Applications to Bidding in Non-Truthful Auctions
Castiglioni, Matteo, Celli, Andrea, Kroer, Christian
We study online learning problems in which a decision maker has to make a sequence of costly decisions, with the goal of maximizing their expected reward while adhering to budget and return-on-investment (ROI) constraints. Previous work requires the decision maker to know beforehand some specific parameters related to the degree of strict feasibility of the offline problem. Moreover, when inputs are adversarial, it requires the existence of a strictly feasible solution to the offline optimization problem at each round. Both requirements are unrealistic for practical applications such as bidding in online ad auctions. We propose a best-of-both-worlds primal-dual framework which circumvents both assumptions by exploiting the notion of interval regret, providing guarantees under both stochastic and adversarial inputs. Our proof techniques can be applied to both input models with minimal modifications, thereby providing a unified perspective on the two problems. Finally, we show how to instantiate the framework to optimally bid in various mechanisms of practical relevance, such as first- and second-price auctions.