Goto

Collaborating Authors

 Cashmore, Michael


Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization

arXiv.org Artificial Intelligence

Portfolio optimization involves determining the optimal allocation of portfolio assets in order to maximize a given investment objective. Traditionally, some form of mean-variance optimization is used with the aim of maximizing returns while minimizing risk, however, more recently, deep reinforcement learning formulations have been explored. Increasingly, investors have demonstrated an interest in incorporating ESG objectives when making investment decisions, and modifications to the classical mean-variance optimization framework have been developed. In this work, we study the use of deep reinforcement learning for responsible portfolio optimization, by incorporating ESG states and objectives, and provide comparisons against modified mean-variance approaches. Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation across additive and multiplicative utility functions of financial and ESG responsibility objectives.


Surrogate Assisted Monte Carlo Tree Search in Combinatorial Optimization

arXiv.org Artificial Intelligence

Industries frequently adjust their facilities network by opening new branches in promising areas and closing branches in areas where they expect low profits. In this paper, we examine a particular class of facility location problems. Our objective is to minimize the loss of sales resulting from the removal of several retail stores. However, estimating sales accurately is expensive and time-consuming. To overcome this challenge, we leverage Monte Carlo Tree Search (MCTS) assisted by a surrogate model that computes evaluations faster. Results suggest that MCTS supported by a fast surrogate function can generate solutions faster while maintaining a consistent solution compared to MCTS that does not benefit from the surrogate function.


Towards Accelerating Benders Decomposition via Reinforcement Learning Surrogate Models

arXiv.org Artificial Intelligence

Stochastic optimization (SO) attempts to offer optimal decisions in the presence of uncertainty. Often, the classical formulation of these problems becomes intractable due to (a) the number of scenarios required to capture the uncertainty and (b) the discrete nature of real-world planning problems. To overcome these tractability issues, practitioners turn to decomposition methods that divide the problem into smaller, more tractable sub-problems. The focal decomposition method of this paper is Benders decomposition (BD), which decomposes stochastic optimization problems on the basis of scenario independence. In this paper we propose a method of accelerating BD with the aid of a surrogate model in place of an NP-hard integer master problem. Through the acceleration method we observe 30% faster average convergence when compared to other accelerated BD implementations. We introduce a reinforcement learning agent as a surrogate and demonstrate how it can be used to solve a stochastic inventory management problem.


A Logic-Based Explanation Generation Framework for Classical and Hybrid Planning Problems

Journal of Artificial Intelligence Research

In human-aware planning systems, a planning agent might need to explain its plan to a human user when that plan appears to be non-feasible or sub-optimal. A popular approach, called model reconciliation, has been proposed as a way to bring the model of the human user closer to the agent’s model. To do so, the agent provides an explanation that can be used to update the model of human such that the agent’s plan is feasible or optimal to the human user. Existing approaches to solve this problem have been based on automated planning methods and have been limited to classical planning problems only. In this paper, we approach the model reconciliation problem from a different perspective, that of knowledge representation and reasoning, and demonstrate that our approach can be applied not only to classical planning problems but also hybrid systems planning problems with durative actions and events/processes. In particular, we propose a logic-based framework for explanation generation, where given a knowledge base KBa (of an agent) and a knowledge base KBh (of a human user), each encoding their knowledge of a planning problem, and that KBa entails a query q (e.g., that a proposed plan of the agent is valid), the goal is to identify an explanation ε ⊆ KBa such that when it is used to update KBh, then the updated KBh also entails q. More specifically, we make the following contributions in this paper: (1) We formally define the notion of logic-based explanations in the context of model reconciliation problems; (2) We introduce a number of cost functions that can be used to reflect preferences between explanations; (3) We present algorithms to compute explanations for both classical planning and hybrid systems planning problems; and (4) We empirically evaluate their performance on such problems. Our empirical results demonstrate that, on classical planning problems, our approach is faster than the state of the art when the explanations are long or when the size of the knowledge base is small (e.g., the plans to be explained are short). They also demonstrate that our approach is efficient for hybrid systems planning problems. Finally, we evaluate the real-world efficacy of explanations generated by our algorithms through a controlled human user study, where we develop a proof-of-concept visualization system and use it as a medium for explanation communication.


Contrastive Explanations of Plans Through Model Restrictions

arXiv.org Artificial Intelligence

In automated planning, the need for explanations arises when there is a mismatch between a proposed plan and the user's expectation. We frame Explainable AI Planning in the context of the plan negotiation problem, in which a succession of hypothetical planning problems are generated and solved. The object of the negotiation is for the user to understand and ultimately arrive at a satisfactory plan. We present the results of a user study that demonstrates that when users ask questions about plans, those questions are contrastive, i.e. "why A rather than B?". We use the data from this study to construct a taxonomy of user questions that often arise during plan negotiation. We formally define our approach to plan negotiation through model restriction as an iterative process. This approach generates hypothetical problems and contrastive plans by restricting the model through constraints implied by user questions. We formally define model-based compilations in PDDL2.1 of each constraint derived from a user question in the taxonomy, and empirically evaluate the compilations in terms of computational complexity. The compilations were implemented as part of an explanation framework that employs iterative model restriction. We demonstrate its benefits in a second user study.


Towards Explainable AI Planning as a Service

arXiv.org Artificial Intelligence

Explainable AI is an important area of research within which Explainable Planning is an emerging topic. In this paper, we argue that Explainable Planning can be designed as a service -- that is, as a wrapper around an existing planning system that utilises the existing planner to assist in answering contrastive questions. We introduce a prototype framework to facilitate this, along with some examples of how a planner can be used to address certain types of contrastive questions. We discuss the main advantages and limitations of such an approach and we identify open questions for Explainable Planning as a service that identify several possible research directions.


Towards Providing Explanations for AI Planner Decisions

arXiv.org Artificial Intelligence

In order to engender trust in AI, humans must understand what an AI system is trying to achieve, and why. To overcome this problem, the underlying AI process must produce justifications and explanations that are both transparent and comprehensible to the user. AI Planning is well placed to be able to address this challenge. In this paper we present a methodology to provide initial explanations for the decisions made by the planner. Explanations are created by allowing the user to suggest alternative actions in plans and then compare the resulting plans with the one found by the planner. The methodology is implemented in the new XAI-Plan framework.


Situated Planning for Execution Under Temporal Constraints

AAAI Conferences

One of the original motivations for domain-independent planning was to generate plans that would then be executed in the environment. However, most existing planners ignore the passage of time during planning. While this can work well when absolute time does not play a role, this approach can lead to plans failing when there are external timing constraints, such as deadlines. In this paper, we describe a new approach for time-sensitive temporal planning. Our planner is aware of the fact that plan execution will start only once planning finishes, and incorporates this information into its decision making, in order to focus the search on branches that are more likely to lead to plans that will be feasible when the planner finishes.


Initial State Prediction in Planning

AAAI Conferences

While recent advances in offline reasoning techniques and online execution strategies have made planning under uncertainty more robust, the application of plans in partially-known environments is still a difficult and important topic. In this paper we present an approach for predicting new information about a partially-known initial state, represented as a multigraph utilizing Maximum-Margin Multi-Valued Regression. We evaluate this approach in four different domains, demonstrating high recall and accuracy.


A Compilation of the Full PDDL+ Language into SMT

AAAI Conferences

Planning in hybrid systems is important for dealing with real-world applications. PDDL+ supports this representation of domains with mixed discrete and continuous dynamics, and supports events and processes modelling exogenous change. Motivated by numerous SAT-based planning approaches, we propose an approach to PDDL+ planning through SMT, describing an SMT encoding that captures all the features of the PDDL+ problem as published by Fox and Long. The encoding can be applied on domains with nonlinear continuous change. We apply this encoding in a simple planning algorithm, demonstrating excellent results on a set of benchmark problems.