Goto

Collaborating Authors

 Casanueva-Morato, Daniel


Towards spiking analog hardware implementation of a trajectory interpolation mechanism for smooth closed-loop control of a spiking robot arm

arXiv.org Artificial Intelligence

Neuromorphic engineering aims to incorporate the computational principles found in animal brains, into modern technological systems. Following this approach, in this work we propose a closed-loop neuromorphic control system for an event-based robotic arm. The proposed system consists of a shifted Winner-Take-All spiking network for interpolating a reference trajectory and a spiking comparator network responsible for controlling the flow continuity of the trajectory, which is fed back to the actual position of the robot. The comparator model is based on a differential position comparison neural network, which governs the execution of the next trajectory points to close the control loop between both components of the system. To evaluate the system, we implemented and deployed the model on a mixed-signal analog-digital neuromorphic platform, the DYNAP-SE2, to facilitate integration and communication with the ED-Scorbot robotic arm platform. Experimental results on one joint of the robot validate the use of this architecture and pave the way for future neuro-inspired control of the entire robot.


Bio-inspired computational memory model of the Hippocampus: an approach to a neuromorphic spike-based Content-Addressable Memory

arXiv.org Artificial Intelligence

The brain has computational capabilities that surpass those of modern systems, being able to solve complex problems efficiently in a simple way. Neuromorphic engineering aims to mimic biology in order to develop new systems capable of incorporating such capabilities. Bio-inspired learning systems continue to be a challenge that must be solved, and much work needs to be done in this regard. Among all brain regions, the hippocampus stands out as an autoassociative short-term memory with the capacity to learn and recall memories from any fragment of them. These characteristics make the hippocampus an ideal candidate for developing bio-inspired learning systems that, in addition, resemble content-addressable memories. Therefore, in this work we propose a bio-inspired spiking content-addressable memory model based on the CA3 region of the hippocampus with the ability to learn, forget and recall memories, both orthogonal and non-orthogonal, from any fragment of them. The model was implemented on the SpiNNaker hardware platform using Spiking Neural Networks. A set of experiments based on functional, stress and applicability tests were performed to demonstrate its correct functioning. This work presents the first hardware implementation of a fully-functional bio-inspired spiking hippocampal content-addressable memory model, paving the way for the development of future more complex neuromorphic systems.


Bio-inspired spike-based Hippocampus and Posterior Parietal Cortex models for robot navigation and environment pseudo-mapping

arXiv.org Artificial Intelligence

The brain has a great capacity for computation and efficient resolution of complex problems, far surpassing modern computers. Neuromorphic engineering seeks to mimic the basic principles of the brain to develop systems capable of achieving such capabilities. In the neuromorphic field, navigation systems are of great interest due to their potential applicability to robotics, although these systems are still a challenge to be solved. This work proposes a spike-based robotic navigation and environment pseudomapping system formed by a bio-inspired hippocampal memory model connected to a Posterior Parietal Cortex model. The hippocampus is in charge of maintaining a representation of an environment state map, and the PPC is in charge of local decision-making. This system was implemented on the SpiNNaker hardware platform using Spiking Neural Networks. A set of real-time experiments was applied to demonstrate the correct functioning of the system in virtual and physical environments on a robotic platform. The system is able to navigate through the environment to reach a goal position starting from an initial position, avoiding obstacles and mapping the environment. To the best of the authors knowledge, this is the first implementation of an environment pseudo-mapping system with dynamic learning based on a bio-inspired hippocampal memory.