Casanova, Edresson
Koel-TTS: Enhancing LLM based Speech Generation with Preference Alignment and Classifier Free Guidance
Hussain, Shehzeen, Neekhara, Paarth, Yang, Xuesong, Casanova, Edresson, Ghosh, Subhankar, Desta, Mikyas T., Fejgin, Roy, Valle, Rafael, Li, Jason
While autoregressive speech token generation models produce speech with remarkable variety and naturalness, their inherent lack of controllability often results in issues such as hallucinations and undesired vocalizations that do not conform to conditioning inputs. We introduce Koel-TTS, a suite of enhanced encoder-decoder Transformer TTS models that address these challenges by incorporating preference alignment techniques guided by automatic speech recognition and speaker verification models. Additionally, we incorporate classifier-free guidance to further improve synthesis adherence to the transcript and reference speaker audio. Our experiments demonstrate that these optimizations significantly enhance target speaker similarity, intelligibility, and naturalness of synthesized speech. Notably, Koel-TTS directly maps text and context audio to acoustic tokens, and on the aforementioned metrics, outperforms state-of-the-art TTS models, despite being trained on a significantly smaller dataset. Audio samples and demos are available on our website.
XTTS: a Massively Multilingual Zero-Shot Text-to-Speech Model
Casanova, Edresson, Davis, Kelly, Gölge, Eren, Göknar, Görkem, Gulea, Iulian, Hart, Logan, Aljafari, Aya, Meyer, Joshua, Morais, Reuben, Olayemi, Samuel, Weber, Julian
Most Zero-shot Multi-speaker TTS (ZS-TTS) systems support only a single language. Although models like YourTTS, VALL-E X, Mega-TTS 2, and Voicebox explored Multilingual ZS-TTS they are limited to just a few high/medium resource languages, limiting the applications of these models in most of the low/medium resource languages. In this paper, we aim to alleviate this issue by proposing and making publicly available the XTTS system. Our method builds upon the Tortoise model and adds several novel modifications to enable multilingual training, improve voice cloning, and enable faster training and inference. XTTS was trained in 16 languages and achieved state-of-the-art (SOTA) results in most of them.
Evaluation of Speech Representations for MOS prediction
Oliveira, Frederico S., Casanova, Edresson, Júnior, Arnaldo Cândido, Gris, Lucas R. S., Soares, Anderson S., Filho, Arlindo R. Galvão
In this paper, we evaluate feature extraction models for predicting speech quality. We also propose a model architecture to compare embeddings of supervised learning and self-supervised learning models with embeddings of speaker verification models to predict the metric MOS. Our experiments were performed on the VCC2018 dataset and a Brazilian-Portuguese dataset called BRSpeechMOS, which was created for this work. The results show that the Whisper model is appropriate in all scenarios: with both the VCC2018 and BRSpeech- MOS datasets. Among the supervised and self-supervised learning models using BRSpeechMOS, Whisper-Small achieved the best linear correlation of 0.6980, and the speaker verification model, SpeakerNet, had linear correlation of 0.6963. Using VCC2018, the best supervised and self-supervised learning model, Whisper-Large, achieved linear correlation of 0.7274, and the best model speaker verification, TitaNet, achieved a linear correlation of 0.6933. Although the results of the speaker verification models are slightly lower, the SpeakerNet model has only 5M parameters, making it suitable for real-time applications, and the TitaNet model produces an embedding of size 192, the smallest among all the evaluated models. The experiment results are reproducible with publicly available source-code1 .
CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages
Oliveira, Frederico S., Casanova, Edresson, Júnior, Arnaldo Cândido, Soares, Anderson S., Filho, Arlindo R. Galvão
In this paper, we present CML-TTS, a recursive acronym for CML-Multi-Lingual-TTS, a new Text-to-Speech (TTS) dataset developed at the Center of Excellence in Artificial Intelligence (CEIA) of the Federal University of Goias (UFG). CML-TTS is based on Multilingual LibriSpeech (MLS) and adapted for training TTS models, consisting of audiobooks in seven languages: Dutch, French, German, Italian, Portuguese, Polish, and Spanish. Additionally, we provide the YourTTS model, a multi-lingual TTS model, trained using 3,176.13 hours from CML-TTS and also with 245.07 hours from LibriTTS, in English. Our purpose in creating this dataset is to open up new research possibilities in the TTS area for multi-lingual models. The dataset is publicly available under the CC-BY 4.0 license1.
Evaluating OpenAI's Whisper ASR for Punctuation Prediction and Topic Modeling of life histories of the Museum of the Person
Gris, Lucas Rafael Stefanel, Marcacini, Ricardo, Junior, Arnaldo Candido, Casanova, Edresson, Soares, Anderson, Aluísio, Sandra Maria
Automatic speech recognition (ASR) systems play a key role in applications involving human-machine interactions. Despite their importance, ASR models for the Portuguese language proposed in the last decade have limitations in relation to the correct identification of punctuation marks in automatic transcriptions, which hinder the use of transcriptions by other systems, models, and even by humans. However, recently Whisper ASR was proposed by OpenAI, a general-purpose speech recognition model that has generated great expectations in dealing with such limitations. This chapter presents the first study on the performance of Whisper for punctuation prediction in the Portuguese language. We present an experimental evaluation considering both theoretical aspects involving pausing points (comma) and complete ideas (exclamation, question, and fullstop), as well as practical aspects involving transcript-based topic modeling - an application dependent on punctuation marks for promising performance. We analyzed experimental results from videos of Museum of the Person, a virtual museum that aims to tell and preserve people's life histories, thus discussing the pros and cons of Whisper in a real-world scenario. Although our experiments indicate that Whisper achieves state-of-the-art results, we conclude that some punctuation marks require improvements, such as exclamation, semicolon and colon.
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone
Casanova, Edresson, Weber, Julian, Shulby, Christopher, Junior, Arnaldo Candido, Gölge, Eren, Ponti, Moacir Antonelli
YourTTS brings the power of a multilingual approach to the task of zero-shot multi-speaker TTS. Our method builds upon the VITS model and adds several novel modifications for zero-shot multi-speaker and multilingual training. We achieved state-of-the-art (SOTA) results in zero-shot multi-speaker TTS and results comparable to SOTA in zero-shot voice conversion on the VCTK dataset. Additionally, our approach achieves promising results in a target language with a single-speaker dataset, opening possibilities for zero-shot multi-speaker TTS and zero-shot voice conversion systems in low-resource languages. Finally, it is possible to fine-tune the YourTTS model with less than 1 minute of speech and achieve state-of-the-art results in voice similarity and with reasonable quality. This is important to allow synthesis for speakers with a very different voice or recording characteristics from those seen during training.
Interpretability Analysis of Deep Models for COVID-19 Detection
da Silva, Daniel Peixoto Pinto, Casanova, Edresson, Gris, Lucas Rafael Stefanel, Junior, Arnaldo Candido, Finger, Marcelo, Svartman, Flaviane, Raposo, Beatriz, Martins, Marcus Vinícius Moreira, Aluísio, Sandra Maria, Berti, Larissa Cristina, Teixeira, João Paulo
During the outbreak of COVID-19 pandemic, several research areas joined efforts to mitigate the damages caused by SARS-CoV-2. In this paper we present an interpretability analysis of a convolutional neural network based model for COVID-19 detection in audios. We investigate which features are important for model decision process, investigating spectrograms, F0, F0 standard deviation, sex and age. Following, we analyse model decisions by generating heat maps for the trained models to capture their attention during the decision process. Focusing on a explainable Inteligence Artificial approach, we show that studied models can taken unbiased decisions even in the presence of spurious data in the training set, given the adequate preprocessing steps. Our best model has 94.44% of accuracy in detection, with results indicating that models favors spectrograms for the decision process, particularly, high energy areas in the spectrogram related to prosodic domains, while F0 also leads to efficient COVID-19 detection.