Plotting

 Carpentier, Alexandra


Restless dependent bandits with fading memory

arXiv.org Machine Learning

We study the stochastic multi-armed bandit problem in the case when the arm samples are dependent over time and generated from so-called weak $\cC$-mixing processes. We establish a $\cC-$Mix Improved UCB agorithm and provide both problem-dependent and independent regret analysis in two different scenarios. In the first, so-called fast-mixing scenario, we show that pseudo-regret enjoys the same upper bound (up to a factor) as for i.i.d. observations; whereas in the second, slow mixing scenario, we discover a surprising effect, that the regret upper bound is similar to the independent case, with an incremental {\em additive} term which does not depend on the number of arms. The analysis of slow mixing scenario is supported with a minmax lower bound, which (up to a $\log(T)$ factor) matches the obtained upper bound.


Local minimax rates for closeness testing of discrete distributions

arXiv.org Machine Learning

We consider the closeness testing (or two-sample testing) problem in the Poisson vector model - which is known to be asymptotically equivalent to the model of multinomial distributions. The goal is to distinguish whether two data samples are drawn from the same unspecified distribution, or whether their respective distributions are separated in $L_1$-norm. In this paper, we focus on adapting the rate to the shape of the underlying distributions, i.e. we consider a local minimax setting. We provide, to the best of our knowledge, the first local minimax rate for the separation distance up to logarithmic factors, together with a test that achieves it. In view of the rate, closeness testing turns out to be substantially harder than the related one-sample testing problem over a wide range of cases.


Rotting bandits are no harder than stochastic ones

arXiv.org Machine Learning

In bandits, arms' distributions are stationary. This is often violated in practice, where rewards change over time. In applications as recommendation systems, online advertising, and crowdsourcing, the changes may be triggered by the pulls, so that the arms' rewards change as a function of the number of pulls. In this paper, we consider the specific case of non-parametric rotting bandits, where the expected reward of an arm may decrease every time it is pulled. We introduce the filtering on expanding window average (FEWA) algorithm that at each round constructs moving averages of increasing windows to identify arms that are more likely to return high rewards when pulled once more. We prove that, without any knowledge on the decreasing behavior of the arms, FEWA achieves similar anytime problem-dependent, $\widetilde{\mathcal{O}}(\log{(KT)}),$ and problem-independent, $\widetilde{\mathcal{O}}(\sqrt{KT})$, regret bounds of near-optimal stochastic algorithms as UCB1 of Auer et al. (2002a). This result substantially improves the prior result of Levine et al. (2017) which needed knowledge of the horizon and decaying parameters to achieve problem-independent bound of only $\widetilde{\mathcal{O}}(K^{1/3}T^{2/3})$. Finally, we report simulations confirming the theoretical improvements of FEWA.


A minimax near-optimal algorithm for adaptive rejection sampling

arXiv.org Machine Learning

Rejection Sampling is a fundamental Monte-Carlo method. It is used to sample from distributions admitting a probability density function which can be evaluated exactly at any given point, albeit at a high computational cost. However, without proper tuning, this technique implies a high rejection rate. Several methods have been explored to cope with this problem, based on the principle of adaptively estimating the density by a simpler function, using the information of the previous samples. Most of them either rely on strong assumptions on the form of the density, or do not offer any theoretical performance guarantee. We give the first theoretical lower bound for the problem of adaptive rejection sampling and introduce a new algorithm which guarantees a near-optimal rejection rate in a minimax sense.


Contextual Bandits under Delayed Feedback

arXiv.org Machine Learning

Delayed feedback is an ubiquitous problem in many industrial systems employing bandit algorithms. Most of those systems seek to optimize binary indicators as clicks. In that case, when the reward is not sent immediately, the learner cannot distinguish a negative signal from a not-yet-sent positive one: she might be waiting for a feedback that will never come. In this paper, we define and address the contextual bandit problem with delayed and censored feedback by providing a new UCB-based algorithm. In order to demonstrate its effectiveness, we provide a finite time regret analysis and an empirical evaluation that compares it against a baseline commonly used in practice.


An Adaptive Strategy for Active Learning with Smooth Decision Boundary

arXiv.org Machine Learning

We present the first adaptive strategy for active learning in the setting of classification with smooth decision boundary. The problem of adaptivity (to unknown distributional parameters) has remained opened since the seminal work of Castro and Nowak (2007), which first established (active learning) rates for this setting. While some recent advances on this problem establish adaptive rates in the case of univariate data, adaptivity in the more practical setting of multivariate data has so far remained elusive. Combining insights from various recent works, we show that, for the multivariate case, a careful reduction to univariate-adaptive strategies yield near-optimal rates without prior knowledge of distributional parameters.


Two-sample Hypothesis Testing for Inhomogeneous Random Graphs

arXiv.org Machine Learning

The study of networks leads to a wide range of high dimensional inference problems. In most practical scenarios, one needs to draw inference from a small population of large networks. The present paper studies hypothesis testing of graphs in this high-dimensional regime. We consider the problem of testing between two populations of inhomogeneous random graphs defined on the same set of vertices. We propose tests based on estimates of the Frobenius and operator norms of the difference between the population adjacency matrices. We show that the tests are uniformly consistent in both the "large graph, small sample" and "small graph, large sample" regimes. We further derive lower bounds on the minimax separation rate for the associated testing problems, and show that the constructed tests are near optimal.


Two-Sample Tests for Large Random Graphs Using Network Statistics

arXiv.org Machine Learning

We consider a two-sample hypothesis testing problem, where the distributions are defined on the space of undirected graphs, and one has access to only one observation from each model. A motivating example for this problem is comparing the friendship networks on Facebook and LinkedIn. The practical approach to such problems is to compare the networks based on certain network statistics. In this paper, we present a general principle for two-sample hypothesis testing in such scenarios without making any assumption about the network generation process. The main contribution of the paper is a general formulation of the problem based on concentration of network statistics, and consequently, a consistent two-sample test that arises as the natural solution for this problem. We also show that the proposed test is minimax optimal for certain network statistics.


Adaptivity to Noise Parameters in Nonparametric Active Learning

arXiv.org Machine Learning

This work addresses various open questions in the theory of active learning for nonparametric classification. Our contributions are both statistical and algorithmic: -We establish new minimax-rates for active learning under common \textit{noise conditions}. These rates display interesting transitions -- due to the interaction between noise \textit{smoothness and margin} -- not present in the passive setting. Some such transitions were previously conjectured, but remained unconfirmed. -We present a generic algorithmic strategy for adaptivity to unknown noise smoothness and margin; our strategy achieves optimal rates in many general situations; furthermore, unlike in previous work, we avoid the need for \textit{adaptive confidence sets}, resulting in strictly milder distributional requirements.


Tight (Lower) Bounds for the Fixed Budget Best Arm Identification Bandit Problem

arXiv.org Machine Learning

We consider the problem of \textit{best arm identification} with a \textit{fixed budget $T$}, in the $K$-armed stochastic bandit setting, with arms distribution defined on $[0,1]$. We prove that any bandit strategy, for at least one bandit problem characterized by a complexity $H$, will misidentify the best arm with probability lower bounded by $$\exp\Big(-\frac{T}{\log(K)H}\Big),$$ where $H$ is the sum for all sub-optimal arms of the inverse of the squared gaps. Our result disproves formally the general belief - coming from results in the fixed confidence setting - that there must exist an algorithm for this problem whose probability of error is upper bounded by $\exp(-T/H)$. This also proves that some existing strategies based on the Successive Rejection of the arms are optimal - closing therefore the current gap between upper and lower bounds for the fixed budget best arm identification problem.