Caron, Francois
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
Caron, Francois, Ayed, Fadhel, Jung, Paul, Lee, Hoil, Lee, Juho, Yang, Hongseok
We consider the optimisation of large and shallow neural networks via gradient flow, where the output of each hidden node is scaled by some positive parameter. We focus on the case where the node scalings are non-identical, differing from the classical Neural Tangent Kernel (NTK) parameterisation. We prove that, for large neural networks, with high probability, gradient flow converges to a global minimum AND can learn features, unlike in the NTK regime. We also provide experiments on synthetic and real-world datasets illustrating our theoretical results and showing the benefit of such scaling in terms of pruning and transfer learning.
Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data
Miscouridou, Xenia, Caron, Francois, Teh, Yee Whye
We propose a novel class of network models for temporal dyadic interaction data. Our objective is to capture important features often observed in social interactions: sparsity, degree heterogeneity, community structure and reciprocity. We use mutually-exciting Hawkes processes to model the interactions between each (directed) pair of individuals. The intensity of each process allows interactions to arise as responses to opposite interactions (reciprocity), or due to shared interests between individuals (community structure). For sparsity and degree heterogeneity, we build the non time dependent part of the intensity function on compound random measures following Todeschini et al., 2016. We conduct experiments on real-world temporal interaction data and show that the proposed model outperforms competing approaches for link prediction, and leads to interpretable parameters.
Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data
Miscouridou, Xenia, Caron, Francois, Teh, Yee Whye
We propose a novel class of network models for temporal dyadic interaction data. Our objective is to capture important features often observed in social interactions: sparsity, degree heterogeneity, community structure and reciprocity. We use mutually-exciting Hawkes processes to model the interactions between each (directed) pair of individuals. The intensity of each process allows interactions to arise as responses to opposite interactions (reciprocity), or due to shared interests between individuals (community structure). For sparsity and degree heterogeneity, we build the non time dependent part of the intensity function on compound random measures following Todeschini et al., 2016. We conduct experiments on real-world temporal interaction data and show that the proposed model outperforms competing approaches for link prediction, and leads to interpretable parameters.
Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data
Miscouridou, Xenia, Caron, Francois, Teh, Yee Whye
We propose a novel class of network models for temporal dyadic interaction data. Our goal is to capture a number of important features often observed in social interactions: sparsity, degree heterogeneity, community structure and reciprocity. We propose a family of models based on self-exciting Hawkes point processes in which events depend on the history of the process. The key component is the conditional intensity function of the Hawkes Process, which captures the fact that interactions may arise as a response to past interactions (reciprocity), or due to shared interests between individuals (community structure). In order to capture the sparsity and degree heterogeneity, the base (non time dependent) part of the intensity function builds on compound random measures following Todeschini et al. (2016). We conduct experiments on a variety of real-world temporal interaction data and show that the proposed model outperforms many competing approaches for link prediction, and leads to interpretable parameters.
Clone MCMC: Parallel High-Dimensional Gaussian Gibbs Sampling
Barbos, Andrei-Cristian, Caron, Francois, Giovannelli, Jean-Franรงois, Doucet, Arnaud
We propose a generalized Gibbs sampler algorithm for obtaining samples approximately distributed from a high-dimensional Gaussian distribution. Similarly to Hogwild methods, our approach does not target the original Gaussian distribution of interest, but an approximation to it. Contrary to Hogwild methods, a single parameter allows us to trade bias for variance. We show empirically that our method is very flexible and performs well compared to Hogwild-type algorithms.
Bayesian nonparametrics for Sparse Dynamic Networks
Palla, Konstantina, Caron, Francois, Teh, Yee Whye
We propose a Bayesian nonparametric prior for time-varying networks. To each node of the network is associated a positive parameter, modeling the sociability of that node. Sociabilities are assumed to evolve over time, and are modeled via a dynamic point process model. The model is able to (a) capture smooth evolution of the interaction between nodes, allowing edges to appear/disappear over time (b) capture long term evolution of the sociabilities of the nodes (c) and yield sparse graphs, where the number of edges grows subquadratically with the number of nodes. The evolution of the sociabilities is described by a tractable time-varying gamma process. We provide some theoretical insights into the model and apply it to three real world datasets.
Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm
Da Xu, Richard Yi, Caron, Francois, Doucet, Arnaud
Unsupervised image segmentation aims at clustering the set of pixels of an image into spatially homogeneous regions. We introduce here a class of Bayesian nonparametric models to address this problem. These models are based on a combination of a Potts-like spatial smoothness component and a prior on partitions which is used to control both the number and size of clusters. This class of models is flexible enough to include the standard Potts model and the more recent Potts-Dirichlet Process model \cite{Orbanz2008}. More importantly, any prior on partitions can be introduced to control the global clustering structure so that it is possible to penalize small or large clusters if necessary. Bayesian computation is carried out using an original generalized Swendsen-Wang algorithm. Experiments demonstrate that our method is competitive in terms of RAND\ index compared to popular image segmentation methods, such as mean-shift, and recent alternative Bayesian nonparametric models.
Bayesian nonparametric models for ranked data
Caron, Francois, Teh, Yee W.
We develop a Bayesian nonparametric extension of the popular Plackett-Luce choice model that can handle an infinite number of choice items. Our framework is based on the theory of random atomic measures, with the prior specified by a gamma process. We derive a posterior characterization and a simple and effective Gibbs sampler for posterior simulation. We then develop a time-varying extension of our model, and apply our model to the New York Times lists of weekly bestselling books.
Bayesian nonparametric models for bipartite graphs
Caron, Francois
We develop a novel Bayesian nonparametric model for random bipartite graphs. The model is based on the theory of completely random measures and is able to handle a potentially infinite number of nodes. We show that the model has appealing properties and in particular it may exhibit a power-law behavior. We derive a posterior characterization, an Indian Buffet-like generative process for network growth, and a simple and efficient Gibbs sampler for posterior simulation. Our model is shown to be well fitted to several real-world social networks.
Bayesian nonparametric models for ranked data
Caron, Francois, Teh, Yee Whye
We develop a Bayesian nonparametric extension of the popular Plackett-Luce choice model that can handle an infinite number of choice items. Our framework is based on the theory of random atomic measures, with the prior specified by a gamma process. We derive a posterior characterization and a simple and effective Gibbs sampler for posterior simulation. We develop a time-varying extension of our model, and apply it to the New York Times lists of weekly bestselling books.