Goto

Collaborating Authors

 Carlo Ciliberto


Manifold Structured Prediction

Neural Information Processing Systems

Structured prediction provides a general framework to deal with supervised problems where the outputs have semantically rich structure. While classical approaches consider finite, albeit potentially huge, output spaces, in this paper we discuss how structured prediction can be extended to a continuous scenario. Specifically, we study a structured prediction approach to manifold valued regression. We characterize a class of problems for which the considered approach is statistically consistent and study how geometric optimization can be used to compute the corresponding estimator.




Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm

Neural Information Processing Systems

We present a novel algorithm to estimate the barycenter of arbitrary probability distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the support of the barycenter incrementally, without requiring any pre-allocation. We consider discrete as well as continuous distributions, proving convergence rates of the proposed algorithm in both settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence on compact domains has Lipschitz continuous gradient with respect to the Total Variation and a characterization of the sample complexity of Sinkhorn potentials.




Online-Within-Online Meta-Learning

Neural Information Processing Systems

We study the problem of learning a series of tasks in a fully online Meta-Learning setting. The goal is to exploit similarities among the tasks to incrementally adapt an inner online algorithm in order to incur a low averaged cumulative error over the tasks. We focus on a family of inner algorithms based on a parametrized variant of online Mirror Descent. The inner algorithm is incrementally adapted by an online Mirror Descent meta-algorithm using the corresponding within-task minimum regularized empirical risk as the meta-loss. In order to keep the process fully online, we approximate the meta-subgradients by the online inner algorithm. An upper bound on the approximation error allows us to derive a cumulative error bound for the proposed method. Our analysis can also be converted to the statistical setting by online-to-batch arguments. We instantiate two examples of the framework in which the meta-parameter is either a common bias vector or feature map. Finally, preliminary numerical experiments confirm our theoretical findings.


Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm

Neural Information Processing Systems

We present a novel algorithm to estimate the barycenter of arbitrary probability distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the support of the barycenter incrementally, without requiring any pre-allocation. We consider discrete as well as continuous distributions, proving convergence rates of the proposed algorithm in both settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence on compact domains has Lipschitz continuous gradient with respect to the Total Variation and a characterization of the sample complexity of Sinkhorn potentials.


Localized Structured Prediction

Neural Information Processing Systems

Key to structured prediction is exploiting the problem's structure to simplify the learning process. A major challenge arises when data exhibit a local structure (i.e., are made "by parts") that can be leveraged to better approximate the relation between (parts of) the input and (parts of) the output. Recent literature on signal processing, and in particular computer vision, shows that capturing these aspects is indeed essential to achieve state-of-the-art performance. However, in this context algorithms are typically derived on a case-by-case basis. In this work we propose the first theoretical framework to deal with part-based data from a general perspective and study a novel method within the setting of statistical learning theory. Our analysis is novel in that it explicitly quantifies the benefits of leveraging the part-based structure of a problem on the learning rates of the proposed estimator.


A Consistent Regularization Approach for Structured Prediction

Neural Information Processing Systems

We propose and analyze a regularization approach for structured prediction problems. We characterize a large class of loss functions that allows to naturally embed structured outputs in a linear space. We exploit this fact to design learning algorithms using a surrogate loss approach and regularization techniques. We prove universal consistency and finite sample bounds characterizing the generalization properties of the proposed method. Experimental results are provided to demonstrate the practical usefulness of the proposed approach.