Goto

Collaborating Authors

 Carlini, Nicholas


Persistent Pre-Training Poisoning of LLMs

arXiv.org Artificial Intelligence

Large language models are pre-trained on uncurated text datasets consisting of trillions of tokens scraped from the Web. Prior work has shown that: (1) web-scraped pre-training datasets can be practically poisoned by malicious actors; and (2) adversaries can compromise language models after poisoning fine-tuning datasets. Our work evaluates for the first time whether language models can also be compromised during pre-training, with a focus on the persistence of pre-training attacks after models are fine-tuned as helpful and harmless chatbots (i.e., after SFT and DPO). We pre-train a series of LLMs from scratch to measure the impact of a potential poisoning adversary under four different attack objectives (denial-of-service, belief manipulation, jailbreaking, and prompt stealing), and across a wide range of model sizes (from 600M to 7B). Our main result is that poisoning only 0.1% of a model's pre-training dataset is sufficient for three out of four attacks to measurably persist through post-training. Moreover, simple attacks like denial-of-service persist through post-training with a poisoning rate of only 0.001%.


Polynomial Time Cryptanalytic Extraction of Deep Neural Networks in the Hard-Label Setting

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) are valuable assets, yet their public accessibility raises security concerns about parameter extraction by malicious actors. Recent work by Carlini et al. (crypto'20) and Canales-Mart\'inez et al. (eurocrypt'24) has drawn parallels between this issue and block cipher key extraction via chosen plaintext attacks. Leveraging differential cryptanalysis, they demonstrated that all the weights and biases of black-box ReLU-based DNNs could be inferred using a polynomial number of queries and computational time. However, their attacks relied on the availability of the exact numeric value of output logits, which allowed the calculation of their derivatives. To overcome this limitation, Chen et al. (asiacrypt'24) tackled the more realistic hard-label scenario, where only the final classification label (e.g., "dog" or "car") is accessible to the attacker. They proposed an extraction method requiring a polynomial number of queries but an exponential execution time. In addition, their approach was applicable only to a restricted set of architectures, could deal only with binary classifiers, and was demonstrated only on tiny neural networks with up to four neurons split among up to two hidden layers. This paper introduces new techniques that, for the first time, achieve cryptanalytic extraction of DNN parameters in the most challenging hard-label setting, using both a polynomial number of queries and polynomial time. We validate our approach by extracting nearly one million parameters from a DNN trained on the CIFAR-10 dataset, comprising 832 neurons in four hidden layers. Our results reveal the surprising fact that all the weights of a ReLU-based DNN can be efficiently determined by analyzing only the geometric shape of its decision boundaries.


Cutting through buggy adversarial example defenses: fixing 1 line of code breaks Sabre

arXiv.org Artificial Intelligence

Sabre is a defense to adversarial examples that was accepted at IEEE S&P 2024. We first reveal significant flaws in the evaluation that point to clear signs of gradient masking. We then show the cause of this gradient masking: a bug in the original evaluation code. By fixing a single line of code in the original repository, we reduce Sabre's robust accuracy to 0%. In response to this, the authors modify the defense and introduce a new defense component not described in the original paper. But this fix contains a second bug; modifying one more line of code reduces robust accuracy to below baseline levels. After we released the first version of our paper online, the authors introduced another change to the defense; by commenting out one line of code during attack we reduce the robust accuracy to 0% again.


Forcing Diffuse Distributions out of Language Models

arXiv.org Artificial Intelligence

Despite being trained specifically to follow user instructions, today's language models perform poorly when instructed to produce random outputs. For example, when prompted to pick a number uniformly between one and ten Llama-2-13B-chat disproportionately favors the number five, and when tasked with picking a first name at random, Mistral-7B-Instruct chooses Avery 40 times more often than we would expect based on the U.S. population. When these language models are used for real-world tasks where diversity of outputs is crucial, such as language model assisted dataset construction, their inability to produce diffuse distributions over valid choices is a major hurdle. In this work, we propose a fine-tuning method that encourages language models to output distributions that are diffuse over valid outcomes. The methods we introduce generalize across a variety of tasks and distributions and make large language models practical for synthetic dataset generation with little human intervention.


Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models

arXiv.org Artificial Intelligence

It is commonplace to produce application-specific models by fine-tuning large pre-trained models using a small bespoke dataset. The widespread availability of foundation model checkpoints on the web poses considerable risks, including the vulnerability to backdoor attacks. In this paper, we unveil a new vulnerability: the privacy backdoor attack. This black-box privacy attack aims to amplify the privacy leakage that arises when fine-tuning a model: when a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model. We conduct extensive experiments on various datasets and models, including both vision-language models (CLIP) and large language models, demonstrating the broad applicability and effectiveness of such an attack. Additionally, we carry out multiple ablation studies with different fine-tuning methods and inference strategies to thoroughly analyze this new threat. Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.


Diffusion Denoising as a Certified Defense against Clean-label Poisoning

arXiv.org Artificial Intelligence

We present a certified defense to clean-label poisoning attacks. These attacks work by injecting a small number of poisoning samples (e.g., 1%) that contain $p$-norm bounded adversarial perturbations into the training data to induce a targeted misclassification of a test-time input. Inspired by the adversarial robustness achieved by $denoised$ $smoothing$, we show how an off-the-shelf diffusion model can sanitize the tampered training data. We extensively test our defense against seven clean-label poisoning attacks and reduce their attack success to 0-16% with only a negligible drop in the test time accuracy. We compare our defense with existing countermeasures against clean-label poisoning, showing that the defense reduces the attack success the most and offers the best model utility. Our results highlight the need for future work on developing stronger clean-label attacks and using our certified yet practical defense as a strong baseline to evaluate these attacks.


Effective Prompt Extraction from Language Models

arXiv.org Artificial Intelligence

The text generated by large language models is commonly controlled by prompting, where a prompt prepended to a user's query guides the model's output. The prompts used by companies to guide their models are often treated as secrets, to be hidden from the user making the query. They have even been treated as commodities to be bought and sold. However, anecdotal reports have shown adversarial users employing prompt extraction attacks to recover these prompts. In this paper, we present a framework for systematically measuring the effectiveness of these attacks. In experiments with 3 different sources of prompts and 11 underlying large language models, we find that simple text-based attacks can in fact reveal prompts with high probability. Our framework determines with high precision whether an extracted prompt is the actual secret prompt, rather than a model hallucination. Prompt extraction experiments on real systems such as Bing Chat and ChatGPT suggest that system prompts can be revealed by an adversary despite existing defenses in place.


Identifying and Mitigating the Security Risks of Generative AI

arXiv.org Artificial Intelligence

Every major technical invention resurfaces the dual-use dilemma -- the new technology has the potential to be used for good as well as for harm. Generative AI (GenAI) techniques, such as large language models (LLMs) and diffusion models, have shown remarkable capabilities (e.g., in-context learning, code-completion, and text-to-image generation and editing). However, GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks. This paper reports the findings of a workshop held at Google (co-organized by Stanford University and the University of Wisconsin-Madison) on the dual-use dilemma posed by GenAI. This paper is not meant to be comprehensive, but is rather an attempt to synthesize some of the interesting findings from the workshop. We discuss short-term and long-term goals for the community on this topic. We hope this paper provides both a launching point for a discussion on this important topic as well as interesting problems that the research community can work to address.


Universal and Transferable Adversarial Attacks on Aligned Language Models

arXiv.org Artificial Intelligence

Because "out-of-the-box" large language models are capable of generating a great deal of objectionable content, recent work has focused on aligning these models in an attempt to prevent undesirable generation. While there has been some success at circumventing these measures -- so-called "jailbreaks" against LLMs -- these attacks have required significant human ingenuity and are brittle in practice. In this paper, we propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors. Specifically, our approach finds a suffix that, when attached to a wide range of queries for an LLM to produce objectionable content, aims to maximize the probability that the model produces an affirmative response (rather than refusing to answer). However, instead of relying on manual engineering, our approach automatically produces these adversarial suffixes by a combination of greedy and gradient-based search techniques, and also improves over past automatic prompt generation methods. Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable, including to black-box, publicly released LLMs. Specifically, we train an adversarial attack suffix on multiple prompts (i.e., queries asking for many different types of objectionable content), as well as multiple models (in our case, Vicuna-7B and 13B). When doing so, the resulting attack suffix is able to induce objectionable content in the public interfaces to ChatGPT, Bard, and Claude, as well as open source LLMs such as LLaMA-2-Chat, Pythia, Falcon, and others. In total, this work significantly advances the state-of-the-art in adversarial attacks against aligned language models, raising important questions about how such systems can be prevented from producing objectionable information. Code is available at github.com/llm-attacks/llm-attacks.


Scalable Extraction of Training Data from (Production) Language Models

arXiv.org Artificial Intelligence

This paper studies extractable memorization: training data that an adversary can efficiently extract by querying a machine learning model without prior knowledge of the training dataset. We show an adversary can extract gigabytes of training data from open-source language models like Pythia or GPT-Neo, semi-open models like LLaMA or Falcon, and closed models like ChatGPT. Existing techniques from the literature suffice to attack unaligned models; in order to attack the aligned ChatGPT, we develop a new divergence attack that causes the model to diverge from its chatbot-style generations and emit training data at a rate 150x higher than when behaving properly. Our methods show practical attacks can recover far more data than previously thought, and reveal that current alignment techniques do not eliminate memorization.