Carlile, Simon
Neural Architecture Search for Energy Efficient Always-on Audio Models
Speckhard, Daniel T., Misiunas, Karolis, Perel, Sagi, Zhu, Tenghui, Carlile, Simon, Slaney, Malcolm
Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches (NAS) that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early-stopping to reduce the computational burden. Our search, evaluated on a sound-event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.
Neural System Model of Human Sound Localization
Jin, Craig T., Carlile, Simon
This paper examines the role of biological constraints in the human auditory localizationprocess. A psychophysical and neural system modeling approach was undertaken in which performance comparisons between competing models and a human subject explore the relevant biologically plausible"realism constraints". The directional acoustical cues, upon which sound localization is based, were derived from the human subject's head-related transfer functions (HRTFs). Sound stimuli were generated by convolving bandpass noise with the HRTFs and were presented toboth the subject and the model. The input stimuli to the model was processed using the Auditory Image Model of cochlear processing.
Neural System Model of Human Sound Localization
Jin, Craig T., Carlile, Simon
This paper examines the role of biological constraints in the human auditory localization process. A psychophysical and neural system modeling approach was undertaken in which performance comparisons between competing models and a human subject explore the relevant biologically plausible "realism constraints". The directional acoustical cues, upon which sound localization is based, were derived from the human subject's head-related transfer functions (HRTFs). Sound stimuli were generated by convolving bandpass noise with the HRTFs and were presented to both the subject and the model. The input stimuli to the model was processed using the Auditory Image Model of cochlear processing. The cochlear data was then analyzed by a time-delay neural network which integrated temporal and spectral information to determine the spatial location of the sound source.