Goto

Collaborating Authors

 Carli, Ina


Antimatter Annihilation Vertex Reconstruction with Deep Learning for ALPHA-g Radial Time Projection Chamber

arXiv.org Artificial Intelligence

The ALPHA-g experiment at CERN aims to precisely measure the terrestrial gravitational acceleration of antihydrogen atoms. A radial Time Projection Chamber (rTPC), that surrounds the ALPHA-g magnetic trap, is employed to determine the annihilation location, called the vertex. The standard approach requires identifying the trajectories of the ionizing particles in the rTPC from the location of their interaction in the gas (spacepoints), and inferring the vertex positions by finding the point where those trajectories (helices) pass closest to one another. In this work, we present a novel approach to vertex reconstruction using an ensemble of models based on the PointNet deep learning architecture. The newly developed model, PointNet Ensemble for Annihilation Reconstruction (PEAR), directly learns the relation between the location of the vertices and the rTPC spacepoints, thus eliminating the need to identify and fit the particle tracks. PEAR shows strong performance in reconstructing vertical vertex positions from simulated data, that is superior to the standard approach for all metrics considered. Furthermore, the deep learning approach can reconstruct the vertical vertex position when the standard approach fails.


AI Meets Antimatter: Unveiling Antihydrogen Annihilations

arXiv.org Artificial Intelligence

The ALPHA-g experiment at CERN aims to perform the first-ever direct measurement of the effect of gravity on antimatter, determining its weight to within 1% precision. This measurement requires an accurate prediction of the vertical position of annihilations within the detector. In this work, we present a novel approach to annihilation position reconstruction using an ensemble of models based on the PointNet deep learning architecture. The newly developed model, PointNet Ensemble for Annihilation Reconstruction (PEAR) outperforms the standard approach to annihilation position reconstruction, providing more than twice the resolution while maintaining a similarly low bias. This work may also offer insights for similar efforts applying deep learning to experiments that require high resolution and low bias.