Carl Edward Rasmussen
Understanding Probabilistic Sparse Gaussian Process Approximations
Matthias Bauer, Mark van der Wilk, Carl Edward Rasmussen
Good sparse approximations are essential for practical inference in Gaussian Processes as the computational cost of exact methods is prohibitive for large datasets. The Fully Independent Training Conditional (FITC) and the Variational Free Energy (VFE) approximations are two recent popular methods. Despite superficial similarities, these approximations have surprisingly different theoretical properties and behave differently in practice. We thoroughly investigate the two methods for regression both analytically and through illustrative examples, and draw conclusions to guide practical application.
Convolutional Gaussian Processes
Mark van der Wilk, Carl Edward Rasmussen, James Hensman
We present a practical way of introducing convolutional structure into Gaussian processes, making them more suited to high-dimensional inputs like images. The main contribution of our work is the construction of an inter-domain inducing point approximation that is well-tailored to the convolutional kernel. This allows us to gain the generalisation benefit of a convolutional kernel, together with fast but accurate posterior inference. We investigate several variations of the convolutional kernel, and apply it to MNIST and CIFAR-10, where we obtain significant improvements over existing Gaussian process models. We also show how the marginal likelihood can be used to find an optimal weighting between convolutional and RBF kernels to further improve performance. This illustration of the usefulness of the marginal likelihood may help automate discovering architectures in larger models.
Convolutional Gaussian Processes
Mark van der Wilk, Carl Edward Rasmussen, James Hensman
We present a practical way of introducing convolutional structure into Gaussian processes, making them more suited to high-dimensional inputs like images. The main contribution of our work is the construction of an inter-domain inducing point approximation that is well-tailored to the convolutional kernel. This allows us to gain the generalisation benefit of a convolutional kernel, together with fast but accurate posterior inference. We investigate several variations of the convolutional kernel, and apply it to MNIST and CIFAR-10, where we obtain significant improvements over existing Gaussian process models. We also show how the marginal likelihood can be used to find an optimal weighting between convolutional and RBF kernels to further improve performance. This illustration of the usefulness of the marginal likelihood may help automate discovering architectures in larger models.