Goto

Collaborating Authors

 Carey, CJ


Gemma 3 Technical Report

arXiv.org Artificial Intelligence

We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Measuring Re-identification Risk

arXiv.org Artificial Intelligence

In this work, we present a new theoretical framework to measure re-identification risk in such user representations. Our framework, based on hypothesis testing, formally bounds the probability that an attacker may be able to obtain the identity of a user from their representation. As an application, we show how our framework is general enough to model important real-world applications such as the Chrome's Topics API for interest-based advertising. We complement our theoretical bounds by showing provably good attack algorithms for re-identification that we use to estimate the re-identification risk in the Topics API. We believe this work provides a rigorous and interpretable notion of re-identification risk and a framework to measure it that can be used to inform real-world applications.


Stars: Tera-Scale Graph Building for Clustering and Graph Learning

arXiv.org Artificial Intelligence

A fundamental procedure in the analysis of massive datasets is the construction of similarity graphs. Such graphs play a key role for many downstream tasks, including clustering, classification, graph learning, and nearest neighbor search. For these tasks, it is critical to build graphs which are sparse yet still representative of the underlying data. The benefits of sparsity are twofold: firstly, constructing dense graphs is infeasible in practice for large datasets, and secondly, the runtime of downstream tasks is directly influenced by the sparsity of the similarity graph. In this work, we present $\textit{Stars}$: a highly scalable method for building extremely sparse graphs via two-hop spanners, which are graphs where similar points are connected by a path of length at most two. Stars can construct two-hop spanners with significantly fewer similarity comparisons, which are a major bottleneck for learning based models where comparisons are expensive to evaluate. Theoretically, we demonstrate that Stars builds a graph in nearly-linear time, where approximate nearest neighbors are contained within two-hop neighborhoods. In practice, we have deployed Stars for multiple data sets allowing for graph building at the $\textit{Tera-Scale}$, i.e., for graphs with tens of trillions of edges. We evaluate the performance of Stars for clustering and graph learning, and demonstrate 10~1000-fold improvements in pairwise similarity comparisons compared to different baselines, and 2~10-fold improvement in running time without quality loss.


metric-learn: Metric Learning Algorithms in Python

arXiv.org Machine Learning

As part of scikit-learn-contrib, it provides a unified interface compatible with scikit-learn which allows to easily perform cross-validation, model selection, and pipelining with other machine learning estimators.


Aligning Mixed Manifolds

AAAI Conferences

Current manifold alignment methods can effectively align data sets that are drawn from a non-intersecting set of manifolds. However, as data sets become increasingly high-dimensional and complex, this assumption may not hold. This paper proposes a novel manifold alignment algorithm, low rank alignment (LRA), that uses a low rank representation (instead of a nearest neighbor graph construction) to embed and align data sets drawn from mixtures of manifolds. LRA does not require the tuning of a sensitive nearest neighbor hyperparameter or prior knowledge of the number of manifolds, both of which are common drawbacks with existing techniques. We demonstrate the effectiveness of our algorithm in two real-world applications: a transfer learning task in spectroscopy and a canonical information retrieval task.


Manifold Spanning Graphs

AAAI Conferences

Graph construction is the essential first step for nearly all manifold learning algorithms. While many applications assume that a simple k-nearest or epsilon-close neighbors graph will accurately model the topology of the underlying manifold, these methods often require expert tuning and may not produce high quality graphs. In this paper, the hyperparameter sensitivity of existing graph construction methods is demonstrated. We then present a new algorithm for unsupervised graph construction, based on minimal assumptions about the input data and its manifold structure.