Goto

Collaborating Authors

 Cardoso, Jorge


Generalizable automated ischaemic stroke lesion segmentation with vision transformers

arXiv.org Artificial Intelligence

Ischaemic stroke, a leading cause of death and disability, critically relies on neuroimaging for characterising the anatomical pattern of injury. Diffusion-weighted imaging (DWI) provides the highest expressivity in ischemic stroke but poses substantial challenges for automated lesion segmentation: susceptibility artefacts, morphological heterogeneity, age-related comorbidities, time-dependent signal dynamics, instrumental variability, and limited labelled data. Current U-Net-based models therefore underperform, a problem accentuated by inadequate evaluation metrics that focus on mean performance, neglecting anatomical, subpopulation, and acquisition-dependent variability. Here, we present a high-performance DWI lesion segmentation tool addressing these challenges through optimized vision transformer-based architectures, integration of 3563 annotated lesions from multi-site data, and algorithmic enhancements, achieving state-of-the-art results. We further propose a novel evaluative framework assessing model fidelity, equity (across demographics and lesion subtypes), anatomical precision, and robustness to instrumental variability, promoting clinical and research utility. This work advances stroke imaging by reconciling model expressivity with domain-specific challenges and redefining performance benchmarks to prioritize equity and generalizability, critical for personalized medicine and mechanistic research.


Data Pruning Can Do More: A Comprehensive Data Pruning Approach for Object Re-identification

arXiv.org Artificial Intelligence

Previous studies have demonstrated that not each sample in a dataset is of equal importance during training. Data pruning aims to remove less important or informative samples while still achieving comparable results as training on the original (untruncated) dataset, thereby reducing storage and training costs. However, the majority of data pruning methods are applied to image classification tasks. To our knowledge, this work is the first to explore the feasibility of these pruning methods applied to object re-identification (ReID) tasks, while also presenting a more comprehensive data pruning approach. By fully leveraging the logit history during training, our approach offers a more accurate and comprehensive metric for quantifying sample importance, as well as correcting mislabeled samples and recognizing outliers. Furthermore, our approach is highly efficient, reducing the cost of importance score estimation by 10 times compared to existing methods. Our approach is a plug-and-play, architecture-agnostic framework that can eliminate/reduce 35%, 30%, and 5% of samples/training time on the VeRi, MSMT17 and Market1501 datasets, respectively, with negligible loss in accuracy (< 0.1%). The lists of important, mislabeled, and outlier samples from these ReID datasets are available at https://github.com/Zi-Y/data-pruning-reid.


Command-line Risk Classification using Transformer-based Neural Architectures

arXiv.org Artificial Intelligence

To protect large-scale computing environments necessary to meet increasing computing demand, cloud providers have implemented security measures to monitor Operations and Maintenance (O&M) activities and therefore prevent data loss and service interruption. Command interception systems are used to intercept, assess, and block dangerous Command-line Interface (CLI) commands before they can cause damage. Traditional solutions for command risk assessment include rule-based systems, which require expert knowledge and constant human revision to account for unseen commands. To overcome these limitations, several end-to-end learning systems have been proposed to classify CLI commands. These systems, however, have several other limitations, including the adoption of general-purpose text classifiers, which may not adapt to the language characteristics of scripting languages such as Bash or PowerShell, and may not recognize dangerous commands in the presence of an unbalanced class distribution. In this paper, we propose a transformer-based command risk classification system, which leverages the generalization power of Large Language Models (LLM) to provide accurate classification and the ability to identify rare dangerous commands effectively, by exploiting the power of transfer learning. We verify the effectiveness of our approach on a realistic dataset of production commands and show how to apply our model for other security-related tasks, such as dangerous command interception and auditing of existing rule-based systems.


Investigating Memory Failure Prediction Across CPU Architectures

arXiv.org Artificial Intelligence

Large-scale datacenters often experience memory failures, where Uncorrectable Errors (UEs) highlight critical malfunction in Dual Inline Memory Modules (DIMMs). Existing approaches primarily utilize Correctable Errors (CEs) to predict UEs, yet they typically neglect how these errors vary between different CPU architectures, especially in terms of Error Correction Code (ECC) applicability. In this paper, we investigate the correlation between CEs and UEs across different CPU architectures, including X86 and ARM. Our analysis identifies unique patterns of memory failure associated with each processor platform. Leveraging Machine Learning (ML) techniques on production datasets, we conduct the memory failure prediction in different processors' platforms, achieving up to 15% improvements in F1-score compared to the existing algorithm. Finally, an MLOps (Machine Learning Operations) framework is provided to consistently improve the failure prediction in the production environment.


Exploring Error Bits for Memory Failure Prediction: An In-Depth Correlative Study

arXiv.org Artificial Intelligence

In large-scale datacenters, memory failure is a common cause of server crashes, with Uncorrectable Errors (UEs) being a major indicator of Dual Inline Memory Module (DIMM) defects. Existing approaches primarily focus on predicting UEs using Correctable Errors (CEs), without fully considering the information provided by error bits. However, error bit patterns have a strong correlation with the occurrence of UEs. In this paper, we present a comprehensive study on the correlation between CEs and UEs, specifically emphasizing the importance of spatio-temporal error bit information. Our analysis reveals a strong correlation between spatio-temporal error bits and UE occurrence. Through evaluations using real-world datasets, we demonstrate that our approach significantly improves prediction performance by 15% in F1-score compared to the state-of-the-art algorithms. Overall, our approach effectively reduces the number of virtual machine interruptions caused by UEs by approximately 59%.


Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models

arXiv.org Artificial Intelligence

Knowledge distillation in neural networks refers to compressing a large model or dataset into a smaller version of itself. We introduce Privacy Distillation, a framework that allows a text-to-image generative model to teach another model without exposing it to identifiable data. Here, we are interested in the privacy issue faced by a data provider who wishes to share their data via a multimodal generative model. A question that immediately arises is ``How can a data provider ensure that the generative model is not leaking identifiable information about a patient?''. Our solution consists of (1) training a first diffusion model on real data (2) generating a synthetic dataset using this model and filtering it to exclude images with a re-identifiability risk (3) training a second diffusion model on the filtered synthetic data only. We showcase that datasets sampled from models trained with privacy distillation can effectively reduce re-identification risk whilst maintaining downstream performance.


Leveraging Log Instructions in Log-based Anomaly Detection

arXiv.org Artificial Intelligence

Artificial Intelligence for IT Operations (AIOps) describes the process of maintaining and operating large IT systems using diverse AI-enabled methods and tools for, e.g., anomaly detection and root cause analysis, to support the remediation, optimization, and automatic initiation of self-stabilizing IT activities. The core step of any AIOps workflow is anomaly detection, typically performed on high-volume heterogeneous data such as log messages (logs), metrics (e.g., CPU utilization), and distributed traces. In this paper, we propose a method for reliable and practical anomaly detection from system logs. It overcomes the common disadvantage of related works, i.e., the need for a large amount of manually labeled training data, by building an anomaly detection model with log instructions from the source code of 1000+ GitHub projects. The instructions from diverse systems contain rich and heterogenous information about many different normal and abnormal IT events and serve as a foundation for anomaly detection. The proposed method, named ADLILog, combines the log instructions and the data from the system of interest (target system) to learn a deep neural network model through a two-phase learning procedure. The experimental results show that ADLILog outperforms the related approaches by up to 60% on the F1 score while satisfying core non-functional requirements for industrial deployments such as unsupervised design, efficient model updates, and small model sizes.


IAD: Indirect Anomalous VMMs Detection in the Cloud-based Environment

arXiv.org Machine Learning

Server virtualization in the form of virtual machines (VMs) with the use of a hypervisor or a Virtual Machine Monitor (VMM) is an essential part of cloud computing technology to provide infrastructure-as-a-service (IaaS). A fault or an anomaly in the VMM can propagate to the VMs hosted on it and ultimately affect the availability and reliability of the applications running on those VMs. Therefore, identifying and eventually resolving it quickly is highly important. However, anomalous VMM detection is a challenge in the cloud environment since the user does not have access to the VMM. This paper addresses this challenge of anomalous VMM detection in the cloud-based environment without having any knowledge or data from VMM by introducing a novel machine learning-based algorithm called IAD: Indirect Anomalous VMMs Detection. This algorithm solely uses the VM's resources utilization data hosted on those VMMs for the anomalous VMMs detection. The developed algorithm's accuracy was tested on four datasets comprising the synthetic and real and compared against four other popular algorithms, which can also be used to the described problem. It was found that the proposed IAD algorithm has an average F1-score of 83.7% averaged across four datasets, and also outperforms other algorithms by an average F1-score of 11\%.


Online Memory Leak Detection in the Cloud-based Infrastructures

arXiv.org Artificial Intelligence

A memory leak in an application deployed on the cloud can affect the availability and reliability of the application. Therefore, to identify and ultimately resolve it quickly is highly important. However, in the production environment running on the cloud, memory leak detection is a challenge without the knowledge of the application or its internal object allocation details. This paper addresses this challenge of online detection of memory leaks in cloud-based infrastructure without having any internal application knowledge by introducing a novel machine learning based algorithm Precog. This algorithm solely uses one metric i.e the system's memory utilization on which the application is deployed for the detection of a memory leak. The developed algorithm's accuracy was tested on 60 virtual machines manually labeled memory utilization data provided by our industry partner Huawei Munich Research Center and it was found that the proposed algorithm achieves the accuracy score of 85\% with less than half a second prediction time per virtual machine.


A Systematic Mapping Study in AIOps

arXiv.org Artificial Intelligence

IT systems of today are becoming larger and more complex, rendering their human supervision more difficult. Artificial Intelligence for IT Operations (AIOps) has been proposed to tackle modern IT administration challenges thanks to AI and Big Data. However, past AIOps contributions are scattered, unorganized and missing a common terminology convention, which renders their discovery and comparison impractical. In this work, we conduct an in-depth mapping study to collect and organize the numerous scattered contributions to AIOps in a unique reference index. We create an AIOps taxonomy to build a foundation for future contributions and allow an efficient comparison of AIOps papers treating similar problems. We investigate temporal trends and classify AIOps contributions based on the choice of algorithms, data sources and the target components. Our results show a recent and growing interest towards AIOps, specifically to those contributions treating failure-related tasks (62%), such as anomaly detection and root cause analysis.