Carbonera, Joel Luís
A Framework for testing Federated Learning algorithms using an edge-like environment
Schwanck, Felipe Machado, Leipnitz, Marcos Tomazzoli, Carbonera, Joel Luís, Wickboldt, Juliano Araujo
Federated Learning (FL) is a machine learning paradigm in which many clients cooperatively train a single centralized model while keeping their data private and decentralized. FL is commonly used in edge computing, which involves placing computer workloads (both hardware and software) as close as possible to the edge, where the data is being created and where actions are occurring, enabling faster response times, greater data privacy, and reduced data transfer costs. However, due to the heterogeneous data distributions/contents of clients, it is non-trivial to accurately evaluate the contributions of local models in global centralized model aggregation. This is an example of a major challenge in FL, commonly known as data imbalance or class imbalance. In general, testing and assessing FL algorithms can be a very difficult and complex task due to the distributed nature of the systems. In this work, a framework is proposed and implemented to assess FL algorithms in a more easy and scalable way. This framework is evaluated over a distributed edge-like environment managed by a container orchestration platform (i.e. Kubernetes).
Accelerating prototype selection with spatial abstraction
Carbonera, Joel Luís
The increasing digitalization in industry and society leads to a growing abundance of data available to be processed and exploited. However, the high volume of data requires considerable computational resources for applying machine learning approaches. Prototype selection techniques have been applied to reduce the requirements of computational resources that are needed by these techniques. In this paper, we propose an approach for speeding up existing prototype selection techniques. It builds an abstract representation of the dataset, using the notion of spatial partition. The second step uses this abstract representation to prune the search space efficiently and select a set of candidate prototypes. After, some conventional prototype selection algorithms can be applied to the candidates selected by our approach. Our approach was integrated with five conventional prototype selection algorithms and tested on 14 widely recognized datasets used in classification tasks. The performance of the modified algorithms was compared to that of their original versions in terms of accuracy and reduction rate. The experimental results demonstrate that, overall, our proposed approach maintains accuracy while enhancing the reduction rate of the original prototype selection algorithms and simultaneously reducing their execution times.