Goto

Collaborating Authors

 Caragea, Cornelia


Zero-Shot Keyphrase Generation: Investigating Specialized Instructions and Multi-Sample Aggregation on Large Language Models

arXiv.org Artificial Intelligence

Keyphrases are the essential topical phrases that summarize a document. Keyphrase generation is a long-standing NLP task for automatically generating keyphrases for a given document. While the task has been comprehensively explored in the past via various models, only a few works perform some preliminary analysis of Large Language Models (LLMs) for the task. Given the impact of LLMs in the field of NLP, it is important to conduct a more thorough examination of their potential for keyphrase generation. In this paper, we attempt to meet this demand with our research agenda. Specifically, we focus on the zero-shot capabilities of open-source instruction-tuned LLMs (Phi-3, Llama-3) and the closed-source GPT-4o for this task. We systematically investigate the effect of providing task-relevant specialized instructions in the prompt. Moreover, we design task-specific counterparts to self-consistency-style strategies for LLMs and show significant benefits from our proposals over the baselines.


Active Few-Shot Learning for Text Classification

arXiv.org Artificial Intelligence

The rise of Large Language Models (LLMs) has boosted the use of Few-Shot Learning (FSL) methods in natural language processing, achieving acceptable performance even when working with limited training data. The goal of FSL is to effectively utilize a small number of annotated samples in the learning process. However, the performance of FSL suffers when unsuitable support samples are chosen. This problem arises due to the heavy reliance on a limited number of support samples, which hampers consistent performance improvement even when more support samples are added. To address this challenge, we propose an active learning-based instance selection mechanism that identifies effective support instances from the unlabeled pool and can work with different LLMs. Our experiments on five tasks show that our method frequently improves the performance of FSL. We make our implementation available on GitHub.


Zero-Shot Verification-guided Chain of Thoughts

arXiv.org Artificial Intelligence

Previous works have demonstrated the effectiveness of Chain-of-Thought (COT) prompts and verifiers in guiding Large Language Models (LLMs) through the space of reasoning. However, most such studies either use a fine-tuned verifier or rely on manually handcrafted few-shot examples. In contrast, in this paper, we focus on LLM-based self-verification of self-generated reasoning steps via COT prompts in a completely zero-shot regime. To explore this setting, we design a new zero-shot prompt, which we call COT STEP, to aid zero-shot decomposition of reasoning steps and design two new zero-shot prompts for LLM-based verifiers. We evaluate the verifiers' ability to classify the correctness of reasoning chains and explore different ways to use verifier scores in guiding reasoning for various mathematical and commonsense reasoning tasks with different LLMs.


SciER: An Entity and Relation Extraction Dataset for Datasets, Methods, and Tasks in Scientific Documents

arXiv.org Artificial Intelligence

Scientific information extraction (SciIE) is critical for converting unstructured knowledge from scholarly articles into structured data (entities and relations). Several datasets have been proposed for training and validating SciIE models. However, due to the high complexity and cost of annotating scientific texts, those datasets restrict their annotations to specific parts of paper, such as abstracts, resulting in the loss of diverse entity mentions and relations in context. In this paper, we release a new entity and relation extraction dataset for entities related to datasets, methods, and tasks in scientific articles. Our dataset contains 106 manually annotated full-text scientific publications with over 24k entities and 12k relations. To capture the intricate use and interactions among entities in full texts, our dataset contains a fine-grained tag set for relations. Additionally, we provide an out-of-distribution test set to offer a more realistic evaluation. We conduct comprehensive experiments, including state-of-the-art supervised models and our proposed LLM-based baselines, and highlight the challenges presented by our dataset, encouraging the development of innovative models to further the field of SciIE.


Stanceformer: Target-Aware Transformer for Stance Detection

arXiv.org Artificial Intelligence

The task of Stance Detection involves discerning the stance expressed in a text towards a specific subject or target. Prior works have relied on existing transformer models that lack the capability to prioritize targets effectively. Consequently, these models yield similar performance regardless of whether we utilize or disregard target information, undermining the task's significance. To address this challenge, we introduce Stanceformer, a target-aware transformer model that incorporates enhanced attention towards the targets during both training and inference. Specifically, we design a \textit{Target Awareness} matrix that increases the self-attention scores assigned to the targets. We demonstrate the efficacy of the Stanceformer with various BERT-based models, including state-of-the-art models and Large Language Models (LLMs), and evaluate its performance across three stance detection datasets, alongside a zero-shot dataset. Our approach Stanceformer not only provides superior performance but also generalizes even to other domains, such as Aspect-based Sentiment Analysis. We make the code publicly available.\footnote{\scriptsize\url{https://github.com/kgarg8/Stanceformer}}


How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics

arXiv.org Artificial Intelligence

Natural Language Inference (NLI) evaluation is crucial for assessing language understanding models; however, popular datasets suffer from systematic spurious correlations that artificially inflate actual model performance. To address this, we propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples. We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics. This categorization significantly reduces spurious correlation measures, with examples labeled as having the highest difficulty showing markedly decreased performance and encompassing more realistic and diverse linguistic phenomena. When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset, surpassing other dataset characterization techniques. Our research addresses limitations in NLI dataset construction, providing a more authentic evaluation of model performance with implications for diverse NLU applications.


FlowLearn: Evaluating Large Vision-Language Models on Flowchart Understanding

arXiv.org Artificial Intelligence

Flowcharts are graphical tools for representing complex concepts in concise visual representations. This paper introduces the FlowLearn dataset, a resource tailored to enhance the understanding of flowcharts. FlowLearn contains complex scientific flowcharts and simulated flowcharts. The scientific subset contains 3,858 flowcharts sourced from scientific literature and the simulated subset contains 10,000 flowcharts created using a customizable script. The dataset is enriched with annotations for visual components, OCR, Mermaid code representation, and VQA question-answer pairs. Despite the proven capabilities of Large Vision-Language Models (LVLMs) in various visual understanding tasks, their effectiveness in decoding flowcharts - a crucial element of scientific communication - has yet to be thoroughly investigated. The FlowLearn test set is crafted to assess the performance of LVLMs in flowchart comprehension. Our study thoroughly evaluates state-of-the-art LVLMs, identifying existing limitations and establishing a foundation for future enhancements in this relatively underexplored domain. For instance, in tasks involving simulated flowcharts, GPT-4V achieved the highest accuracy (58%) in counting the number of nodes, while Claude recorded the highest accuracy (83%) in OCR tasks. Notably, no single model excels in all tasks within the FlowLearn framework, highlighting significant opportunities for further development.


Co-training for Low Resource Scientific Natural Language Inference

arXiv.org Artificial Intelligence

Scientific Natural Language Inference (NLI) is the task of predicting the semantic relation between a pair of sentences extracted from research articles. The automatic annotation method based on distant supervision for the training set of SciNLI (Sadat and Caragea, 2022b), the first and most popular dataset for this task, results in label noise which inevitably degenerates the performance of classifiers. In this paper, we propose a novel co-training method that assigns weights based on the training dynamics of the classifiers to the distantly supervised labels, reflective of the manner they are used in the subsequent training epochs. That is, unlike the existing semi-supervised learning (SSL) approaches, we consider the historical behavior of the classifiers to evaluate the quality of the automatically annotated labels. Furthermore, by assigning importance weights instead of filtering out examples based on an arbitrary threshold on the predicted confidence, we maximize the usage of automatically labeled data, while ensuring that the noisy labels have a minimal impact on model training. The proposed method obtains an improvement of 1.5% in Macro F1 over the distant supervision baseline, and substantial improvements over several other strong SSL baselines. We make our code and data available on Github.


SciDMT: A Large-Scale Corpus for Detecting Scientific Mentions

arXiv.org Artificial Intelligence

We present SciDMT, an enhanced and expanded corpus for scientific mention detection, offering a significant advancement over existing related resources. SciDMT contains annotated scientific documents for datasets (D), methods (M), and tasks (T). The corpus consists of two components: 1) the SciDMT main corpus, which includes 48 thousand scientific articles with over 1.8 million weakly annotated mention annotations in the format of in-text span, and 2) an evaluation set, which comprises 100 scientific articles manually annotated for evaluation purposes. To the best of our knowledge, SciDMT is the largest corpus for scientific entity mention detection. The corpus's scale and diversity are instrumental in developing and refining models for tasks such as indexing scientific papers, enhancing information retrieval, and improving the accessibility of scientific knowledge. We demonstrate the corpus's utility through experiments with advanced deep learning architectures like SciBERT and GPT-3.5. Our findings establish performance baselines and highlight unresolved challenges in scientific mention detection. SciDMT serves as a robust benchmark for the research community, encouraging the development of innovative models to further the field of scientific information extraction.


A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus

arXiv.org Artificial Intelligence

Natural language inference (NLI), the task of recognizing the entailment relationship in sentence pairs, is an actively studied topic serving as a proxy for natural language understanding. Despite the relevance of the task in building conversational agents and improving text classification, machine translation and other NLP tasks, to the best of our knowledge, there is no publicly available NLI corpus for the Romanian language. To this end, we introduce the first Romanian NLI corpus (RoNLI) comprising 58K training sentence pairs, which are obtained via distant supervision, and 6K validation and test sentence pairs, which are manually annotated with the correct labels. We conduct experiments with multiple machine learning methods based on distant learning, ranging from shallow models based on word embeddings to transformer-based neural networks, to establish a set of competitive baselines. Furthermore, we improve on the best model by employing a new curriculum learning strategy based on data cartography. Our dataset and code to reproduce the baselines are available at https://github.com/Eduard6421/RONLI.