Goto

Collaborating Authors

 Capobianco, Roberto


Towards a fuller understanding of neurons with Clustered Compositional Explanations

arXiv.org Artificial Intelligence

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations (i.e., the highest ones) used to check the alignment, thus lacking completeness. In this paper, we propose a generalization, called Clustered Compositional Explanations, that combines Compositional Explanations with clustering and a novel search heuristic to approximate a broader spectrum of the neurons' behavior. We define and address the problems connected to the application of these methods to multiple ranges of activations, analyze the insights retrievable by using our algorithm, and propose desiderata qualities that can be used to study the explanations returned by different algorithms.


An Overview of Environmental Features that Impact Deep Reinforcement Learning in Sparse-Reward Domains

Journal of Artificial Intelligence Research

Deep reinforcement learning has achieved impressive results in recent years; yet, it is still severely troubled by environments showcasing sparse rewards. On top of that, not all sparse-reward environments are created equal; in other words, they can differ in the presence or absence of various features, with many of them having a great impact on learning. In light of this, the present work puts together a literature compilation of such environmental features, covering particularly those that have been taken advantage of and those that continue to pose a challenge. We expect this effort to provide guidance to researchers for assessing the generality of their new proposals and to call their attention to issues that remain unresolved when dealing with sparse rewards.


Semi-Supervised GCN for learning Molecular Structure-Activity Relationships

arXiv.org Artificial Intelligence

Since the introduction of artificial intelligence in medicinal chemistry, the necessity has emerged to analyse how molecular property variation is modulated by either single atoms or chemical groups. In this paper, we propose to train graph-to-graph neural network using semi-supervised learning for attributing structure-property relationships. As initial case studies we apply the method to solubility and molecular acidity while checking its consistency in comparison with known experimental chemical data. As final goal, our approach could represent a valuable tool to deal with problems such as activity cliffs, lead optimization and de-novo drug design.


Molecule Generation from Input-Attributions over Graph Convolutional Networks

arXiv.org Artificial Intelligence

It is well known that Drug Design is often a costly process both in terms of time and economic effort. While good Quantitative Structure-Activity Relationship models (QSAR) can help predicting molecular properties without the need to synthesize them, it is still required to come up with new molecules to be tested. This is mostly done in lack of tools to determine which modifications are more promising or which aspects of a molecule are more influential for the final activity/property. Here we present an automatic process which involves Graph Convolutional Network models and input-attribution methods to generate new molecules. We also explore the problems of over-optimization and applicability, recognizing them as two important aspects in the practical use of such automatic tools.


Memory Wrap: a Data-Efficient and Interpretable Extension to Image Classification Models

arXiv.org Artificial Intelligence

Due to their black-box and data-hungry nature, deep learning techniques are not yet widely adopted for real-world applications in critical domains, like healthcare and justice. This paper presents Memory Wrap, a plug-and-play extension to any image classification model. Memory Wrap improves both data-efficiency and model interpretability, adopting a content-attention mechanism between the input and some memories of past training samples. We show that Memory Wrap outperforms standard classifiers when it learns from a limited set of data, and it reaches comparable performance when it learns from the full dataset. We discuss how its structure and content-attention mechanisms make predictions interpretable, compared to standard classifiers. To this end, we both show a method to build explanations by examples and counterfactuals, based on the memory content, and how to exploit them to get insights about its decision process. We test our approach on image classification tasks using several architectures on three different datasets, namely CIFAR10, SVHN, and CINIC10.


Reinforcement Learning for Optimization of COVID-19 Mitigation policies

arXiv.org Artificial Intelligence

The year 2020 has seen the COVID-19 virus lead to one of the worst global pandemics in history. As a result, governments around the world are faced with the challenge of protecting public health, while keeping the economy running to the greatest extent possible. Epidemiological models provide insight into the spread of these types of diseases and predict the effects of possible intervention policies. However, to date,the even the most data-driven intervention policies rely on heuristics. In this paper, we study how reinforcement learning (RL) can be used to optimize mitigation policies that minimize the economic impact without overwhelming the hospital capacity. Our main contributions are (1) a novel agent-based pandemic simulator which, unlike traditional models, is able to model fine-grained interactions among people at specific locations in a community; and (2) an RL-based methodology for optimizing fine-grained mitigation policies within this simulator. Our results validate both the overall simulator behavior and the learned policies under realistic conditions.